Mater Sci Eng C Mater Biol Appl
February 2016
Scaffolds that can provide the requisite biological cues for the fast regeneration of bone are highly relevant to the advances in tissue engineering and regenerative medicine. In the present article, we report the fabrication of a chitosan-gelatin-siloxane scaffold bearing interpolymer-siloxane Schiff base linkage, through a single-step dialdehyde cross-linking and freeze-drying method using 3-aminopropyltriethoxysilane as the siloxane precursor. Swelling of the scaffolds in phosphate buffered saline indicates enhancement with increase in siloxane concentration, whereas compressive moduli of the wet scaffolds reveal inverse dependence, owing to the presence of siloxane, rich in silanol groups.
View Article and Find Full Text PDFCurrent study was focused on the development of a non-fastidious lactic acid producing strain having better growth rate, low pH tolerance and good productivity by genome shuffling of a mutant strain of Lactobacillus delbrueckii NCIM 2025 and an amylase producing non-fastidious Bacillus amyloliquefaciens ATCC 23842. After the third cycle of the protoplast fusion, lactic acid production by few fusants was monitored and the best fusant was selected for further studies. Optimization of the important process parameters for lactic acid production was conducted using Plackett-Burman design and response surface methodology.
View Article and Find Full Text PDFThe aim of this work was to optimize the cultural and production parameters through the statistical approach for the synthesis of alpha amylase by Bacillus amyloliquefaciens in submerged fermentation (SmF) using a combination of wheat bran and groundnut oil cake (1:1) as the substrate. The process parameters influencing the enzyme production were identified using Plackett-Burman design. Among the various variables screened, the substrate concentration, incubation period and CaCl2 concentration were most significant.
View Article and Find Full Text PDF