Flubendiamide, a phthalic acid diamide insecticide, has been implicated in potential teratogenic effects on non-target organisms, especially during embryonic development. This study examines the impact of flubendiamide on eye development in chick embryos, a well-established model for vertebrate development. Exposure to 0.
View Article and Find Full Text PDFUnlabelled: Pesticides are commonly employed to enhance agricultural productivity to meet the demands of the expanding global populace. Their harmful impact on non-target organisms is a severe cause of concern, and hence, new, presumably safer variants are developed. Flubendiamide is one such insecticide that targets caterpillars of insect pests.
View Article and Find Full Text PDFPesticides have increased crop yield but severely impacted ecosystems and non-target organisms. Flubendiamide, a new generation pesticide, targets insect larvae but also affects non-target organisms. This study examines the effects of lowest observed effect concentration of technical grade flubendiamide (0.
View Article and Find Full Text PDFA recent study from our lab revealed that the inhibition of cyclooxygenase-2 (COX-2) exclusively reduces the level of PGE (Prostaglandin E) among prostanoids and hampers the normal development of several structures, strikingly the cranial vault, in chick embryos. In order to unearth the mechanism behind the deviant development of cranial features, the expression pattern of various factors that are known to influence cranial neural crest cell (CNCC) migration was checked in chick embryos after inhibiting COX-2 activity using etoricoxib. The compromised level of cell adhesion molecules and their upstream regulators, namely CDH1 (E-cadherin), CDH2 (N-cadherin), MSX1 (Msh homeobox 1), and TGF-β (Transforming growth factor beta), observed in the etoricoxib-treated embryos indicate that COX-2, through its downstream effector PGE, regulates the expression of these factors perhaps to aid the migration of CNCCs.
View Article and Find Full Text PDF