IEEE J Biomed Health Inform
February 2024
Chronic wounds affect millions of people worldwide every year. An adequate assessment of a wound's prognosis is critical to wound care, guiding clinical decision making by helping clinicians understand wound healing status, severity, triaging and determining the efficacy of a treatment regimen. The current standard of care involves using wound assessment tools, such as Pressure Ulcer Scale for Healing (PUSH) and Bates-Jensen Wound Assessment Tool (BWAT), to determine wound prognosis.
View Article and Find Full Text PDFBackground: Composition of tissue types within a wound is a useful indicator of its healing progression. Tissue composition is clinically used in wound healing tools (eg, Bates-Jensen Wound Assessment Tool) to assess risk and recommend treatment. However, wound tissue identification and the estimation of their relative composition is highly subjective.
View Article and Find Full Text PDFWhite matter (WM) lesions are diffuse WM abnormalities that appear as hyperintense (bright) regions in cranial magnetic resonance imaging (MRI). WM lesions are often observed in older populations and are important indicators of stroke, multiple sclerosis, dementia and other brain-related disorders. In this paper, a new automated method for WM lesions segmentation is presented.
View Article and Find Full Text PDFThis paper introduces an approach to perform segmentation of regions in computed tomography (CT) images that exhibit intra-region intensity variations and at the same time have similar intensity distributions with surrounding/adjacent regions. In this work, we adapt a feature computed from wavelet transform called wavelet energy to represent the region information. The wavelet energy is embedded into a level set model to formulate the segmentation model called wavelet energy-guided level set-based active contour (WELSAC).
View Article and Find Full Text PDF