Thorough characterization of protein therapeutics is often challenging due to the heterogeneity arising from primary sequence variants, post-translational modifications, proteolytic clipping, or incomplete processing of the signal peptide. Modern mass spectrometry (MS) techniques are now routinely used to characterize such heterogeneous protein populations. Here, we present an LC-MS/MS method using (-succinimidyloxycarbonylmethyl)-tris (2,4,6-trimethoxyphenyl) phosphonium bromide (TMPP-Ac-OSu) to label any free N-terminal α-amines to rapidly and selectively identify proteolytic clipping events.
View Article and Find Full Text PDFKRAS is the most frequently mutated oncogene in cancer and encodes a key signalling protein in tumours. The KRAS(G12C) mutant has a cysteine residue that has been exploited to design covalent inhibitors that have promising preclinical activity. Here we optimized a series of inhibitors, using novel binding interactions to markedly enhance their potency and selectivity.
View Article and Find Full Text PDFElectrospray ionization mass spectrometry (ESI-MS) is a ubiquitously used analytical method applied across multiple departments in biopharma, ranging from early research discovery to process development. Accurate, efficient, and consistent protein MS spectral deconvolution across multiple instrument and detector platforms (time-of-flight, Orbitrap, Fourier-transform ion cyclotron resonance) is essential. When proteins are ionized during the ESI process, a distribution of consecutive multiply charged ions are observed on the / scale, either positive [M + H] or negative [M - H] depending on the ionization polarity.
View Article and Find Full Text PDFNative mass spectra of large, polydisperse biomolecules with repeated subunits, such as lipoprotein Nanodiscs, can often be challenging to analyze by conventional methods. The presence of tens of closely spaced, overlapping peaks in these mass spectra can make charge state, total mass, or subunit mass determinations difficult to measure by traditional methods. Recently, we introduced a Fourier Transform-based algorithm that can be used to deconvolve highly congested mass spectra for polydisperse ion populations with repeated subunits and facilitate identification of the charge states, subunit mass, charge-state-specific, and total mass distributions present in the ion population.
View Article and Find Full Text PDFOver the past two decades, orthogonal acceleration time-of-flight has been the de facto analyzer for solution and membrane-soluble protein native mass spectrometry (MS) studies; this however is gradually changing. Three MS instruments are compared, the Q-ToF, Orbitrap, and the FT-ICR, to analyze, under native instrument and buffer conditions, the seven-transmembrane helical protein bacteriorhodopsin-octylglucoside micelle and the empty nanodisc (MSP1D1-Nd) using both MS and tandem-MS modes of operation. Bacteriorhodopsin can be released from the octylglucoside-micelle efficiently on all three instruments (MS-mode), producing a narrow charge state distribution (z = 8+ to 10+) by either increasing the source lens or collision cell (or HCD) voltages.
View Article and Find Full Text PDFMonoclonal antibodies (mAbs) are large heterogeneous molecules that represent a growing class of therapeutics. De novo sequencing of mAbs becomes necessary when the original cell line or the cDNA is unavailable. An important feature in sequencing of mAbs is the discrimination of isobaric residues (Xle): leucine (Leu) and isoleucine (Ile).
View Article and Find Full Text PDFThe efficacy of therapeutic antibodies that induce antibody-dependent cellular cytotoxicity can be improved by reduced fucosylation. Consequently, fucosylation is a critical product attribute of monoclonal antibodies produced as protein therapeutics. Small molecule fucosylation inhibitors have also shown promise as potential therapeutics in animal models of tumors, arthritis, and sickle cell disease.
View Article and Find Full Text PDFSaposin A (SapA) lipoprotein discs, also known as picodiscs (PDs), represent an attractive method to solubilize glycolipids for protein interaction studies in aqueous solution. Recent electrospray ionization mass spectrometry (ESI-MS) data suggest that the size and composition of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC)-containing PDs at neutral pH differs from those of N,N-dimethyldodecylamine N-oxide determined by X-ray crystallography. Using high-resolution ESI-MS, multiangle laser light scattering (MALLS), and molecular dynamics (MD) simulations, the composition, heterogeneity, and structure of POPC-PDs in aqueous ammonium acetate solutions at pH 4.
View Article and Find Full Text PDFRecombinant monoclonal antibodies are an important class of therapeutic agents that have found widespread use for the treatment of many human diseases. Here, we have examined the utility of ion mobility mass spectrometry (IMMS) for the rapid characterization of disulfide variants in intact IgG2 monoclonal antibodies. It is shown that IMMS reveals 2 to 3 gas-phase conformer populations for IgG2s.
View Article and Find Full Text PDFEvidence that certain gamma-secretase modulators (GSMs) target the 99-residue C-terminal domain (C99) of the amyloid precursor protein, a substrate of gamma-secretase, but not the protease complex itself has been presented [Kukar, T. L., et al.
View Article and Find Full Text PDFThe results of time-resolved thermal dissociation measurements and molecular dynamic simulations are reported for gaseous deprotonated ions of the specific complexes of bovine beta-lactoglobulin (Lg) and a series of the fatty acids (FA): CH(3)(CH(2))(x)COOH, where x = 10, 12, 14, and 16. At the reaction temperatures investigated, 25-66 degrees C, the gaseous ions dissociate exclusively by the loss of neutral FA. According to the kinetic data, and confirmed by ion mobility measurements, the (Lg + FA)(7-) ions exist in two, noninterconverting structures designated the fast (Lg + FA)(f)(7-) and slow (Lg + FA)(s)(7-) components.
View Article and Find Full Text PDFThe use of gas phase additives to stabilize noncovalent protein complexes in electrospray ionization mass spectrometry (ES-MS) is demonstrated for two protein-ligand interactions, an enzyme-small molecule inhibitor complex, and a protein-disaccharide complex. It is shown that the introduction of gas phase imidazole into the ES ion source effectively protects gas phase protein-ligand complexes against in-source dissociation. The stabilizing effect of imidazole vapor is comparable to that observed upon addition of imidazole to the ES solution.
View Article and Find Full Text PDFGas-phase ion/molecule chemistry has been combined with ion mobility separation and time-of-flight mass spectrometry to enable the characterization of large poly(ethylene glycol)s (PEGs) and PEGylated molecules (>40 kDa). A facile method is presented in which gas-phase superbases are reacted in the high-pressure source region of commercial TOF mass spectrometers to manipulate the charge states of large ions generated by electrospray ionization (ESI). Charge stripping decreases the spectral congestion typically observed in ESI mass spectra of high molecular weight polydisperse PEGylated molecules.
View Article and Find Full Text PDF