MnO-based materials have limited capacity and poor conductivity over various voltages, hampering their potential for energy storage applications. This work proposes a novel approach to address these challenges. A self-oriented multiple-electronic structure of a 1D-MnO-nanorod/2D-MnO-nanosphere composite was assembled on 2D-graphene oxide nanosheet/1D-carbon nanofiber (GO/CNF) hybrids.
View Article and Find Full Text PDFA comprehensive and comparative exploration research performed, aiming to elucidate the fundamental mechanisms of rare-earth (RE) metal-ion doping into LiTiO (LTO), reveals the enhanced electrochemical performance of the nanocrystalline RE-LTO electrodes in high-power Li-ion batteries. Pristi ne LiTiO (LTO) and rare-earth metal-doped LiTiLnO (RE-LTO with RE = Dy, Ce, Nd, Sm, and Eu; ≈ 0.1) nanocrystalline anode materials were synthesized using a simple mechanochemical method and subsequent calcination at 850 °C.
View Article and Find Full Text PDFThe growth of advanced micro-and nanostructures with metal oxides has consistently generated extraordinary interest in energy and environmental applications. Cutting-edge nanostructures exhibit superior reactive sites and surface areas, thus improving the performance in crucial domains. In this study, sharp-edged pencil-type ZnO flowers and BiOI flakes as pristine materials, and their composition with carbon nanofibers (CNFs) (ZnO-BiOI@CNFs) as a hetero hybrid catalyst as well as binary compositions such as ZnO-BiOI, ZnO@CNFs, and BiOI@CNFs catalysts were fabricated using a simple and convenient hydrothermal synthesis process.
View Article and Find Full Text PDF