Publications by authors named "Dhananjay Thakur"

Attraction and mating between male and female animals depend on effective communication between conspecifics. However, in mosquitoes, we have only a rudimentary understanding of the sensory cues and receptors critical for the communication that is essential for reproductive behavior. While it is known that male use sound to help them identify females, it is not unclear whether sound detection is absolutely required since other cues such as vision may also participate in mating behavior.

View Article and Find Full Text PDF

Acute avoidance of dangerous temperatures is critical for animals to prevent or minimize injury. Therefore, surface receptors have evolved to endow neurons with the capacity to detect noxious heat so that animals can initiate escape behaviors. Animals including humans have evolved intrinsic pain-suppressing systems to attenuate nociception under some circumstances.

View Article and Find Full Text PDF

Key Points: Receptor-operated activation of TRPC4 cation channels requires G proteins and phospholipase-Cδ1 (PLCδ1) activation by intracellular Ca . Concurrent stimulation of the G pathway accelerates G activation of TRPC4, which is not mimicked by increasing cytosolic Ca . The kinetic effect of G was diminished by alkaline intracellular pH (pH ) and increased pH buffer capacity.

View Article and Find Full Text PDF

Rhodopsin is a light receptor comprised of an opsin protein and a light-sensitive retinal chromophore. Despite more than a century of scrutiny, there is no evidence that opsins function in chemosensation. Here, we demonstrate that three Drosophila opsins, Rh1, Rh4, and Rh7, are needed in gustatory receptor neurons to sense a plant-derived bitter compound, aristolochic acid (ARI).

View Article and Find Full Text PDF

The decision to consume or reject a food based on the degree of acidity is critical for animal survival. However, the gustatory receptors that detect sour compounds and influence feeding behavior have been elusive. Here, using the fly, Drosophila melanogaster, we reveal that a member of the ionotropic receptor family, IR7a, is essential for rejecting foods laced with high levels of acetic acid.

View Article and Find Full Text PDF

Many animals, ranging from vinegar flies to humans, discriminate a wide range of tastants, including sugars, bitter compounds, NaCl, and sour. However, the taste of Ca is poorly understood, and it is unclear whether animals such as Drosophila melanogaster are endowed with this sense. Here, we examined Ca taste in Drosophila and showed that high levels of Ca are aversive.

View Article and Find Full Text PDF

Transient receptor potential canonical 4 (TRPC4) forms non-selective cation channels implicated in the regulation of diverse physiological functions. Previously, TRPC4 was shown to be activated by the Gi/o subgroup of heterotrimeric G-proteins involving Gαi/o, rather than Gβγ, subunits. Because the lifetime and availability of Gα-GTP are regulated by regulators of G-protein signalling (RGS) and Gαi/o-Loco (GoLoco) domain-containing proteins via their GTPase-activating protein (GAP) and guanine-nucleotide-dissociation inhibitor (GDI) functions respectively, we tested how RGS and GoLoco domain proteins affect TRPC4 currents activated via Gi/o-coupled receptors.

View Article and Find Full Text PDF

Transient Receptor Potential Canonical (TRPC) proteins form nonselective cation channels commonly known to be activated downstream from receptors that signal through phospholipase C (PLC). Although TRPC3/C6/C7 can be directly activated by diacylglycerols produced by PLC breakdown of phosphatidylinositol 4,5-bisphosphate (PIP2), the mechanism by which the PLC pathway activates TRPC4/C5 remains unclear. We show here that TRPC4 activation requires coincident stimulation of Gi/o subgroup of G proteins and PLCδ, with a preference for PLCδ1 over PLCδ3, but not necessarily the PLCβ pathway commonly thought to be involved in receptor-operated TRPC activation.

View Article and Find Full Text PDF

Background And Purpose: Transient receptor potential canonical (TRPC) channels play important roles in a broad array of physiological functions and are involved in various diseases. However, due to a lack of potent subtype-specific inhibitors the exact roles of TRPC channels in physiological and pathophysiological conditions have not been elucidated.

Experimental Approach: Using fluorescence membrane potential and Ca(2+) assays and electrophysiological recordings, we characterized new 2-aminobenzimidazole-based small molecule inhibitors of TRPC4 and TRPC5 channels identified from cell-based fluorescence high-throughput screening.

View Article and Find Full Text PDF

Duplications spanning nine genes at the genomic locus 16p13.1 predispose individuals to acute aortic dissections. The most likely candidate gene in this region leading to the predisposition for dissection is MYH11, which encodes smooth muscle myosin heavy chain (SM-MHC).

View Article and Find Full Text PDF

In the central nervous system, canonical transient receptor potential (TRPC) channels have been implicated in mediating neuronal excitation induced by stimulating metabotropic receptors, including group 1 metabotropic glutamate receptors (mGluRs). Lateral septal (LS) neurons express high levels of TRPC4 and group I mGluRs. However, to what extent native TRPC4-containing channels (TRPC4-cc) are activated as well as the impact of different levels of TRPC4-cc activation on neuronal excitability remain elusive.

View Article and Find Full Text PDF

Controlled transport of multiple individual nanostructures is crucial for nanoassembly and nanodelivery but is challenging because of small particle size. Although atomic force microscopy and optical and magnetic tweezers can control single particles, it is extremely difficult to scale these technologies for multiple structures. Here, we demonstrate a "nano-conveyer-belt" technology that permits simultaneous transport and tracking of multiple individual nanospecies in a selected direction.

View Article and Find Full Text PDF

There has been great interest in the use of nanoparticles for imaging, particularly in multimodal applications (e.g., combination of MRI and fluorescence).

View Article and Find Full Text PDF