Background: The annual incidence of traumatic brain injury (TBI) in the United States is over 2.5 million, with approximately 3-5 million people living with chronic sequelae. Compared with moderate-severe TBI, the long-term effects of mild TBI (mTBI) are less understood but important to address, particularly for contact sport athletes and military personnel who have high mTBI exposure.
View Article and Find Full Text PDFTraumatic brain injury (TBI) is one of the leading causes of death and disability worldwide. Detailed studies of the microglial response after TBI require high throughput quantification of changes in microglial count and morphology in histological sections throughout the brain. In this paper, we present a fully automated end-to-end system that is capable of assessing microglial activation in white matter regions on whole slide images of Iba1 stained sections.
View Article and Find Full Text PDFPeak incidence of traumatic brain injury (TBI) occurs in both young and old individuals, and older age at injury is associated with worse outcome and poorer recovery. Moderate-severe TBI is a reported risk factor for dementia, including Alzheimer's disease (AD), but whether mild TBI (mTBI) alters AD pathogenesis is not clear. To delineate how age at injury and predisposition to amyloid formation affect the acute response to mTBI, we used the Closed Head Impact Model of Engineered Rotational Acceleration (CHIMERA) model of TBI to induce two mild injuries in wild-type (WT) and APP/PS1 mice at either 6 or 13months of age and assessed behavioural, histological and biochemical changes up to 14days post-injury.
View Article and Find Full Text PDFCHIMERA (Closed Head Impact Model of Engineered Rotational Acceleration) is a recently described animal model of traumatic brain injury (TBI) that primarily produces diffuse axonal injury (DAI) characterized by white matter inflammation and axonal damage. CHIMERA was specifically designed to reliably generate a variety of TBI severities using precise and quantifiable biomechanical inputs in a nonsurgical user-friendly platform. The objective of this study was to define the lower limit of single impact mild TBI (mTBI) using CHIMERA by characterizing the dose-response relationship between biomechanical input and neurological, behavioral, neuropathological and biochemical outcomes.
View Article and Find Full Text PDFConcussion is a serious health concern. Concussion in athletes is of particular interest with respect to the relationship of concussion exposure to risk of chronic traumatic encephalopathy (CTE), a neurodegenerative condition associated with altered cognitive and psychiatric functions and profound tauopathy. However, much remains to be learned about factors other than cumulative exposure that could influence concussion pathogenesis.
View Article and Find Full Text PDFBackground: Traumatic brain injury (TBI) is a major health care concern that currently lacks any effective treatment. Despite promising outcomes from many preclinical studies, clinical evaluations have failed to identify effective pharmacological therapies, suggesting that the translational potential of preclinical models may require improvement. Rodents continue to be the most widely used species for preclinical TBI research.
View Article and Find Full Text PDFTraumatic brain injury (TBI) is a major worldwide healthcare problem. Despite promising outcomes from many preclinical studies, the failure of several clinical studies to identify effective therapeutic and pharmacological approaches for TBI suggests that methods to improve the translational potential of preclinical studies are highly desirable. Rodent models of TBI are increasingly in demand for preclinical research, particularly for closed head injury (CHI), which mimics the most common type of TBI observed clinically.
View Article and Find Full Text PDFTraumatic brain injury (TBI) increases Alzheimer's disease (AD) risk and leads to the deposition of neurofibrillary tangles and amyloid deposits similar to those found in AD. Agonists of Liver X receptors (LXRs), which regulate the expression of many genes involved in lipid homeostasis and inflammation, improve cognition and reduce neuropathology in AD mice. One pathway by which LXR agonists exert their beneficial effects is through ATP-binding cassette transporter A1 (ABCA1)-mediated lipid transport onto apolipoprotein E (apoE).
View Article and Find Full Text PDFThe recent discovery of a barbiturate-sensitive "general anesthesia switch" mechanism localized in the rat brain stem mesopontine tegmental anesthesia area (MPTA) has challenged the current view of the nonspecific actions of general anesthetic agents in the CNS. In this study we provide electrophysiological evidence that the antinociception, which accompanies the behavioral state resembling general anesthesia following pentobarbital (PB) microinjections into the MPTA of awake rats, could be accompanied by the attenuation of sensory transmission through the spinothalamic tract (STT). Following bilateral microinjections of PB into the MPTA spontaneous firing rate (SFR), antidromic firing index (FI), and sciatic (Sc) as well as sural (Su) nerve-evoked responses (ER) of identified lumbar STT neurons in the isoflurane-anesthetized rat were quantified using extracellular recording techniques.
View Article and Find Full Text PDF