MicroRNAs are small RNAs that are deregulated under disease conditions. This allows them to be used as biomarkers for disease diagnosis. Recently, such microRNAs are serving as non- invasive blood based biomarkers due to ease of detection, and high stability at room temperature in biofluids.
View Article and Find Full Text PDFSpherical and non-spherical magnetic hydrogel particles were synthesized in a microfluidic device containing an embedded UV light reflector. Monodisperse magnetic emulsion droplets were generated in a T-junction and allowed to relax into spheres, disks, and plugs in confining microchannel geometries. Particle morphology was locked-in via UV-initiated photopolymerization.
View Article and Find Full Text PDFPolymeric particles in custom designed geometries and with tunable chemical anisotropy are expected to enable a variety of new technologies in diverse areas such as photonics, diagnostics and functional materials. We present a simple, high throughput and high resolution microfluidic method to synthesize such polymeric particles. Building off earlier work that we have done on continuous flow lithography (CFL) (D.
View Article and Find Full Text PDFWe report the synthesis and self-assembly of amphiphilic, nonspherical, polymeric microparticles. Wedge-shaped particles bearing segregated hydrophilic and hydrophobic sections were synthesized in a microfludic channel by polymerizing across laminar coflowing streams of hydrophilic and hydrophobic polymers using continuous flow lithography (CFL). Particle monodispersity was characterized by measuring both the size of the particles formed and the extent of amphiphilicity.
View Article and Find Full Text PDFPrecisely shaped polymeric particles and structures are widely used for applications in photonic materials, MEMS, biomaterials and self-assembly. Current approaches for particle synthesis are either batch processes or flow-through microfluidic schemes that are based on two-phase systems, limiting the throughput, shape and functionality of the particles. We report a one-phase method that combines the advantages of microscope projection photolithography and microfluidics to continuously form morphologically complex or multifunctional particles down to the colloidal length scale.
View Article and Find Full Text PDFThe controlled synthesis of nonspherical microparticles using microfluidics processing is described. Polymer droplets, formed by shearing a photopolymer using a continuous water phase at a T-junction, were constrained to adopt nonspherical shapes by confining them using appropriate microchannel geometries. Plugs were obtained by shearing the polymer phase at low shear rates, while disks were obtained by flattening droplets using a channel of low height.
View Article and Find Full Text PDF