Currently, with the bloom in artificial intelligence (AI) algorithms, various human-centered smart systems can be utilized, especially in cognitive computing, for the detection of various chronic brain diseases such as epileptic seizure. The primary goal of this research article is to propose a novel human-centered cognitive computing (HCCC) method for segment-wise seizure classification by employing multiresolution extracted data with directed transfer function (DTF) features, termed as the multiresolution directed transfer function (MDTF) approach. Initially, the multiresolution information of the epileptic seizure signal is extracted using a multiresolution adaptive filtering (MRAF) method.
View Article and Find Full Text PDFA novel approach for multichannel epilepsy seizure classification which will help to automatically locate seizure activity present in the focal brain region was proposed. This paper suggested an Internet of Things (IoT) framework based on a smart phone by utilizing a novel feature termed multiresolution critical spectral verge (MCSV), based on frequency-derived information for epileptic seizure classification which was optimized using a flower pollination algorithm (FPA). A wireless sensor technology (WSN) was utilized to record the electroencephalography (EEG) signal of epileptic patients.
View Article and Find Full Text PDF