Publications by authors named "Dhamala E"

Considerable heterogeneity exists in the expression of complex human behaviors across the cognitive, personality and mental health domains. It is increasingly evident that individual variability in behavioral expression is substantially affected by sociodemographic factors that often interact with life experiences. Here, we formally address the urgent need to incorporate intersectional identities in neuroimaging studies of behavior, with a focus on research in mental health.

View Article and Find Full Text PDF

Risk and protective factors for psychiatric illnesses are linked to distinct structural and functional changes in the brain. Further, the prevalence of these factors varies across sexes and genders, yet the distinct and joint effects of sex and gender in this context have not been extensively characterized. This suggests that risk and protective factors may map onto the brain and uniquely influence individuals across sexes and genders.

View Article and Find Full Text PDF

The functional properties of the human brain arise, in part, from the vast assortment of cell types that pattern the cerebral cortex. The cortical sheet can be broadly divided into distinct networks, which are embedded into processing streams, or gradients, that extend from unimodal systems through higher-order association territories. Here using microarray data from the Allen Human Brain Atlas and single-nucleus RNA-sequencing data from multiple cortical territories, we demonstrate that cell-type distributions are spatially coupled to the functional organization of cortex, as estimated through functional magnetic resonance imaging.

View Article and Find Full Text PDF
Article Synopsis
  • The goal of computational psychiatry is to create models that connect differences in brain function to cognitive impairments and symptoms, which are often resistant to treatment.* -
  • Research shows that to predict cognitive functioning accurately, large participant samples are needed, highlighting limitations in smaller patient studies.* -
  • Using a transfer learning approach on neuroimaging data from the UK Biobank, the study found that predictions of cognitive functioning improved significantly, even with smaller sample sizes, validating the effectiveness of training models on larger datasets.*
View Article and Find Full Text PDF
Article Synopsis
  • - The study investigates how brain mechanisms related to cocaine use disorder involve both cortical and subcortical systems, emphasizing the importance of large-scale functional brain networks and the dopamine system.
  • - Previous research predominantly focused on cortico-striatal circuits, but this study shifts attention to how functional connectivity patterns are associated with neurotransmitter receptor densities in cocaine users.
  • - Findings reveal that specific patterns of connectivity in the brains of individuals with cocaine use disorder correspond with the spatial densities of dopamine D receptors, suggesting that these receptor distributions may influence brain connectivity associated with substance use.
View Article and Find Full Text PDF

Sex and gender are associated with human behavior throughout the life span and across health and disease, but whether they are associated with similar or distinct neural phenotypes is unknown. Here, we demonstrate that, in children, sex and gender are uniquely reflected in the intrinsic functional connectivity of the brain. Somatomotor, visual, control, and limbic networks are preferentially associated with sex, while network correlates of gender are more distributed throughout the cortex.

View Article and Find Full Text PDF

Psychotic-like experiences (PLEs) include a range of sub-threshold symptoms that resemble aspects of psychosis but do not necessarily indicate the presence of psychiatric illness. These experiences are highly prevalent in youth and are associated with developmental disruptions across social, academic, and emotional domains. While not all youth who report PLEs develop psychosis, many develop other psychiatric illnesses during adolescence and adulthood.

View Article and Find Full Text PDF

To bring biomarkers closer to clinical application, they should be generalizable, reliable, and maintain performance within the constraints of routine clinical conditions. The functional striatal abnormalities (FSA), is among the most advanced neuroimaging biomarkers in schizophrenia, trained to discriminate diagnosis, with post-hoc analyses indicating prognostic properties. Here, we attempt to replicate its diagnostic capabilities measured by the area under the curve (AUC) in receiver operator characteristic curves discriminating individuals with psychosis (n = 101) from healthy controls (n = 51) in the Human Connectome Project for Early Psychosis.

View Article and Find Full Text PDF

Background: The biological mechanisms that contribute to cocaine and other substance use disorders involve an array of cortical and subcortical systems. Prior work on the development and maintenance of substance use has largely focused on cortico-striatal circuits, with relatively less attention on alterations within and across large-scale functional brain networks, and associated aspects of the dopamine system. The brain-wide pattern of temporal co-activation between distinct brain regions, referred to as the functional connectome, underpins individual differences in behavior.

View Article and Find Full Text PDF

Sex and gender are associated with human behavior throughout the lifespan and across health and disease, but whether they are associated with similar or distinct neural phenotypes is unknown. Here, we demonstrate that, in children, sex and gender are uniquely reflected in the intrinsic functional connectivity of the brain. Unimodal networks are more strongly associated with sex while heteromodal networks are more strongly associated with gender.

View Article and Find Full Text PDF

To bring biomarkers closer to clinical application, they should be generalizable, reliable, and maintain performance within the constraints of routine clinical conditions. The functional striatal abnormalities (FSA), is among the most advanced neuroimaging biomarkers in schizophrenia, trained to discriminate diagnosis, with post-hoc analyses indicating prognostic properties. Here, we attempt to replicate its diagnostic capabilities measured by the area under the curve (AUC) in receiver operator characteristic curves discriminating individuals with psychosis (n=101) from healthy controls (n=51) in the Human Connectome Project for Early Psychosis.

View Article and Find Full Text PDF

To bring biomarkers closer to clinical application, they should be generalizable, reliable, and maintain performance within the constraints of routine clinical conditions. The functional striatal abnormalities (FSA), is among the most advanced neuroimaging biomarkers in schizophrenia, trained to discriminate diagnosis, with post-hoc analyses indicating prognostic properties. Here, we attempt to replicate its diagnostic capabilities measured by the area under the curve (AUC) in receiver operator characteristic curves discriminating individuals with psychosis (n=101) from healthy controls (n=51) in the Human Connectome Project for Early Psychosis.

View Article and Find Full Text PDF

The functional properties of the human brain arise, in part, from the vast assortment of cell types that pattern the cortex. The cortical sheet can be broadly divided into distinct networks, which are further embedded into processing streams, or gradients, that extend from unimodal systems through higher-order association territories. Here, using transcriptional data from the Allen Human Brain Atlas, we demonstrate that imputed cell type distributions are spatially coupled to the functional organization of cortex, as estimated through fMRI.

View Article and Find Full Text PDF

Internalizing and externalizing traits are two distinct classes of behaviors in psychiatry. However, whether shared or unique brain network features predict internalizing and externalizing behaviors in children and adults remain poorly understood. Using a sample of 2262 children from the Adolescent Brain Cognitive Development (ABCD) study and 752 adults from the Human Connectome Project (HCP), we show that network features predicting internalizing and externalizing behavior are, at least in part, dissociable in children, but not in adults.

View Article and Find Full Text PDF

Functional connectomes (FCs), represented by networks or graphs that summarize coactivation patterns between pairs of brain regions, have been related at a population level to age, sex, cognitive/behavioral scores, life experience, genetics, and disease/disorders. However, quantifying FC differences between individuals also provides a rich source of information with which to map to differences in those individuals' biology, experience, genetics or behavior. In this study, graph matching is used to create a novel inter-individual FC metric, called swap distance, that quantifies the distance between pairs of individuals' partial FCs, with a smaller swap distance indicating the individuals have more similar FC.

View Article and Find Full Text PDF

Background: Individual differences in functional brain connectivity can be used to predict both the presence of psychiatric illness and variability in associated behaviors. However, despite evidence for sex differences in functional network connectivity and in the prevalence, presentation, and trajectory of psychiatric illnesses, the extent to which disorder-relevant aspects of network connectivity are shared or unique across the sexes remains to be determined.

Methods: In this work, we used predictive modeling approaches to evaluate whether shared or unique functional connectivity correlates underlie the expression of psychiatric illness-linked behaviors in males and females in data from the Adolescent Brain Cognitive Development Study (N = 5260; 2571 females).

View Article and Find Full Text PDF

Psychiatric illnesses are heterogeneous in nature. No illness manifests in the same way across individuals, and no two patients with a shared diagnosis exhibit identical symptom profiles. Over the last several decades, group-level analyses of in vivo neuroimaging data have led to fundamental advances in our understanding of the neurobiology of psychiatric illnesses.

View Article and Find Full Text PDF

Across the brain sciences, institutions and individuals have begun to actively acknowledge and address the presence of racism, bias, and associated barriers to inclusivity within our community. However, even with these recent calls to action, limited attention has been directed to inequities in the research methods and analytic approaches we use. The very process of science, including how we recruit, the methodologies we utilize and the analyses we conduct, can have marked downstream effects on the equity and generalizability of scientific discoveries across the global population.

View Article and Find Full Text PDF

A fundamental goal across the neurosciences is the characterization of relationships linking brain anatomy, functioning, and behavior. Although various MRI modalities have been developed to probe these relationships, direct comparisons of their ability to predict behavior have been lacking. Here, we compared the ability of anatomical T1, diffusion and functional MRI (fMRI) to predict behavior at an individual level.

View Article and Find Full Text PDF

Individual differences in brain anatomy can be used to predict variations in cognitive ability. Most studies to date have focused on broad population-level trends, but the extent to which the observed predictive features are shared across sexes and age groups remains to be established. While it is standard practice to account for intracranial volume (ICV) using proportion correction in both regional and whole-brain morphometric analyses, in the context of brain-behavior predictions the possible differential impact of ICV correction on anatomical features and subgroups within the population has yet to be systematically investigated.

View Article and Find Full Text PDF

A thorough understanding of sex-independent and sex-specific neurobiological features that underlie cognitive abilities in healthy individuals is essential for the study of neurological illnesses in which males and females differentially experience and exhibit cognitive impairment. Here, we evaluate sex-independent and sex-specific relationships between functional connectivity and individual cognitive abilities in 392 healthy young adults (196 males) from the Human Connectome Project. First, we establish that sex-independent models comparably predict crystallised abilities in males and females, but only successfully predict fluid abilities in males.

View Article and Find Full Text PDF

White matter pathways between neurons facilitate neuronal coactivation patterns in the brain. Insight into how these structural and functional connections underlie complex cognitive functions provides an important foundation with which to delineate disease-related changes in cognitive functioning. Here, we integrate neuroimaging, connectomics, and machine learning approaches to explore how functional and structural brain connectivity relate to cognition.

View Article and Find Full Text PDF

Background: Many subjects with major depression (MDD) exhibit subthreshold mania symptoms (MDD+). This study investigated, for the first time, using emotional inhibition tasks, whether the neural organization of MDD+ subjects is more similar to bipolar depression (BDD) or to MDD subjects without subthreshold bipolar symptoms (MDD-).

Method: This study included 118 medication-free young adults (15 - 30 yrs.

View Article and Find Full Text PDF

A thorough understanding of sex differences that exist in the brains of healthy individuals is crucial for the study of neurological illnesses that exhibit phenotypic differences between males and females. Here we evaluate sex differences in regional temporal dependence of resting-state brain activity in 195 adult male-female pairs strictly matched for total grey matter volume from the Human Connectome Project. We find that males have more persistent temporal dependence in regions within temporal, parietal, and occipital cortices.

View Article and Find Full Text PDF