Publications by authors named "Dezhou Cao"

Active colloids driven out of thermal equilibrium serve as building blocks for smart materials with tunable structures and functions. Using chemical energy to drive colloids is advantageous but requires precise control over chemical release. To address this, we developed colloidal ionogels-polymer microspheres infused with ionic liquids-that show controlled assembly and self-propulsion upon tunable swelling.

View Article and Find Full Text PDF

Solvent-free oxidative desulfurization can avoid environmental pollution caused by organic solvents as well as prevent loss of fuel during the oil-water separation process. In this work, first, hydrophilic ionic liquid gel microspheres with [BMIM]BF and PHEMA as the dispersion medium and gel network, respectively, were successfully prepared by using mesoporous silica microspheres as a supporting skeleton capable of stabilizing the gel through an anchoring effect, and then the catalyst [BMIM]PW and oxidant HO were incorporated into the gel microspheres to construct a liquid compartment microreactor for deep desulfurization. The prepared microreactor (SiO@[BMIM]PW/ILG-microspheres) has excellent extraction-catalytic capacity and exhibited ∼100% desulfurization ratio for a model oil of -heptane with 500 ppm of DBT at 60 °C for 3 h without solvents.

View Article and Find Full Text PDF
Article Synopsis
  • Colloidal molecules are structures made from micro- and nanoparticles that help us study molecular behavior and create materials with adjustable properties.
  • This research presents a method for creating colloidal molecules, where a central active particle is surrounded by passive particles that interact via chemical reactions and electric fields.
  • The study showcases the ability to design various particle structures and control their assembly in real time, leading to innovative applications in adaptive micro-nanomachines.
View Article and Find Full Text PDF

Colloids that generate chemicals, or "chemically active colloids", can interact with their neighbors and generate patterns via forces arising from such chemical gradients. Examples of such assemblies of chemically active colloids are abundant in the literature, but a unified theoretical framework is needed to rationalize the scattered results. Combining experiments, theory, Brownian dynamics, and finite element simulations, we present here a conceptual framework for understanding how immotile, yet chemically active, colloids assemble.

View Article and Find Full Text PDF

Many real-world scenarios involve interfaces, particularly liquid-liquid interfaces, that can fundamentally alter the dynamics of colloids. This is poorly understood for chemically active colloids that release chemicals into their environment. We report here the surprising discovery that chemical micromotors─colloids that convert chemical fuels into self-propulsion─move significantly faster at an oil-water interface than on a glass substrate.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessionk2h1lb9c89shlm3a0kop7rd6n52m5g2a): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once