Publications by authors named "Dezhenkova L"

: In 2022, the World Health Organization highlighted the necessity for the development of new antifungal agents. Polyene antibiotics are characterized by a low risk of drug resistance; however, their use is limited by low solubility and severe side effects. : A series of -alkylated derivatives of amphotericin B and nystatin A as well as their -(2-hydroxyethyl)amides were synthesized.

View Article and Find Full Text PDF

The acquisition of multidrug resistance (MDR) to chemotherapy is a major obstacle to successful cancer treatment. Aiming to improve the potency of anthraquinone-derived antitumor compounds against MDR cancer cells, we employed a rational design approach to develop new heteroarene-fused anthraquinones. Shifting the carboxamide group in the naphtho[2,3-f]indole scaffold from the 3-position to 2 increased the lipophilicity and P-glycoprotein (P-gp) binding of the derivatives, potentially enhancing their ability to circumvent P-gp-mediated MDR.

View Article and Find Full Text PDF

Gossypol and its derivatives arouse interest due to their broad spectrum of biological activities. Despite its wide potential application, there is no reported example of gossypol derivatives bearing stable radical functional groups. The first gossypol nitroxide hybrid compound was prepared here via formation of a Schiff base.

View Article and Find Full Text PDF

Polyene antibiotics have been used in antifungal therapy since the mid-twentieth century. They are highly valued for their broad spectrum of activity and the rarity of pathogen resistance to their action. However, their use in the treatment of systemic mycoses often results in serious side-effects.

View Article and Find Full Text PDF

Based on the results of our own preliminary studies, the derivative of the marine alkaloid fascaplysin containing a phenyl substituent at C-9 was selected to evaluate the therapeutic potential in vivo and in vitro. It was shown that this compound has outstandingly high antimicrobial activity against Gram-positive bacteria, including antibiotic-resistant strains in vitro. The presence of a substituent at C-9 of the framework is of fundamental importance, since its replacement to neighboring positions leads to a sharp decrease in the selectivity of the antibacterial action, which indicates the presence of a specific therapeutic target in bacterial cells.

View Article and Find Full Text PDF

G-quadruplex (G4) ligands attract considerable attention as potential anticancer therapeutics. In this study we proposed an original scheme for synthesis of azole-fused anthraquinones and prepared a series of G4 ligands carrying amino- or guanidinoalkylamino side chains. The heterocyclic core and structure of the terminal groups strongly affect on binding to G4-forming oligonucleotides, cellular accumulation and antitumor potency of compounds.

View Article and Find Full Text PDF

Breast and other estrogen receptor α-positive cancers tend to develop resistance to existing drugs. Chalcone derivatives possess anticancer activity based on their ability to form covalent bonds with targets acting as Michael acceptors. This study aimed to evaluate the anticancer properties of a series of chalcones (-) with a sulfonamide group attached to the vinyl ketone moiety.

View Article and Find Full Text PDF

In our pursuit of developing novel analogs of anthracyclines with enhanced antitumor efficacy and safety, we have designed a synthesis scheme for 4,11-dihydroxy-5,10-dioxocyclopenta[b]anthracene-2-carboxamides. These newly synthesized compounds exhibit remarkable antiproliferative potency against various mammalian tumor cell lines, including those expressing activated mechanisms of multidrug resistance. The structure of the diamine moiety in the carboxamide side chain emerges as a critical determinant for anticancer activity and interaction with key targets such as DNA, topoisomerase 1, and ROS induction.

View Article and Find Full Text PDF

Polyene antifungal amphotericin B (AmB) has been used for over 60 years, and remains a valuable clinical treatment for systemic mycoses, due to its broad antifungal activity and low rate of emerging resistance. There is no consensus on how exactly it kills fungal cells but it is certain that AmB and the closely-related nystatin (Nys) can form pores in membranes and have a higher affinity towards ergosterol than cholesterol. Notably, the high nephro- and hemolytic toxicity of polyenes and their low solubility in water have led to efforts to improve their properties.

View Article and Find Full Text PDF

Natamycin is a macrolide polyene antibiotic, characterized by a potent broad spectrum antifungal activity and low toxicity. However, it is not used for the treatment of systemic mycoses due to its low bioavailability and low solubility in aqueous solutions. In order to create new semisynthetic antifungal agents for treatment of mycoses, a series of water-soluble amides of natamycin were synthesized.

View Article and Find Full Text PDF

A series of novel cobalt bis(dicarbollide)-curcumin conjugates were synthesized. Two conjugates were obtained through the nucleophilic ring-opening reaction of the 1,4-dioxane and tetrahydropyran derivatives of cobalt bis(dicarbollide) with the OH group of curcumin, and using two equiv. of the oxonium derivatives, two other conjugates containing two cobalt bis(dicarbollide) units per molecule were obtained.

View Article and Find Full Text PDF

Chemical modifications of anthraquiones are aimed at novel derivatives with improved antitumor properties. Emergence of multidrug resistance (MDR) due to overexpression of transmembrane ATP binding cassette transporters, in particular, MDR1/P-glycoprotein (Pgp), can limit the use of anthraquinone based drugs. Previously we have demonstrated that annelation of modified five-membered heterocyclic rings with the anthraquinone core yielded a series of compounds with optimized antitumor properties.

View Article and Find Full Text PDF

To establish a new approach for the synthesis of quinoxaline 1,4-dioxides as hypoxia-selective cytotoxic agents, an original multi-step preparation of derivatives possessing the diamine moiety at position 7 was evaluated. Herein, we present the synthesis of a series of novel 7-amino-6-halogeno-3-phenylquinoxaline-2-carbonitrile 1,4-dioxides 13a-h, 14a,b,g based on the regioselective Beirut reaction. Comparison of antitumor properties of derivatives possessing the diamine moiety at position 7 with structurally close congeners possessing the corresponding amino groups at position 6 revealed key differences in the cytotoxicity profiles and HIF-1α inhibition.

View Article and Find Full Text PDF

Carbonic anhydrase IX is a promising target for the search for new antitumor compounds with improved properties. Using the molecular hybridization approach, on the basis of structures of a selective carbonic anhydrase IX inhibitor 3 and an activator of apoptosis 2 (1), a series of 1-substituted isatin-5-sulfonamides 5a-5u were designed and synthesized. The study of the inhibitory activity of isatin-5-sulfonamides showed the ability to inhibit I, II, IX, XII isoforms at nano- and micromolar concentrations.

View Article and Find Full Text PDF

The anthraquinone scaffold has long been known as a source of efficacious antitumor drugs. In particular, the various chemical modifications of the side chains in this scaffold have yielded the compounds potent for the wild type tumor cells, their counterparts with molecular determinants of altered drug response, as well as in vivo settings. Further exploring the chemotype of anticancer heteroarene-fused anthraquinones, we herein demonstrate that derivative of anthra[2,3-b]thiophene-2-carboxamide, (compound 8) is highly potent against a panel of human tumor cell lines and their drug resistant variants.

View Article and Find Full Text PDF

Oligomycin A is a potent antibiotic and antitumor agent. However, its applications are restricted by its high toxicity and low bioavailability. In this study, we obtained Oligomycin A Diels-Alder adducts with benzoquinone and -benzylmaleimide and determined their absolute configurations by combining H and ROESY NMR data with molecular mechanics conformational analysis and quantum chemical reaction modeling.

View Article and Find Full Text PDF

In this article, we describe the synthesis of 3-phenylquinoxaline-2-carbonitrile 1,4-dioxides bearing cyclic diamine residues at positions 6 or 7; the synthesis is based on the nucleophilic substitution of halogens. All synthesized 6(7)-aminoquinoxaline-2-carbonitrile 1,4-dioxides 3-6 demonstrated higher cytotoxicity and hypoxia selectivity compared to the reference agent tirapazamine against breast adenocarcinoma cell lines (MCF7, MDA-MB-231). The structure and position of the diamine residue considerably affects the antiproliferative properties of the quinoxaline-2-carbonitrile 1,4-dioxides.

View Article and Find Full Text PDF

Mostotrin (MT), a novel compound, at least five orders of magnitude more soluble in water than its mother substance, was designed and synthesised from tryptanthrin (TR). Its structure was established by nuclear magnetic resonance and mass spectrometry data and confirmed by X‑ray analysis, revealing that MT is a pentacyclic product with an additional pseudo‑cycle formed with the participation of one intramolecular hydrogen bond. Antimicrobial activity and cytotoxic action against tumour cells in vitro, as well as anti‑tumour effects, acute toxicity and anti‑inflammatory activities in vivo, were evaluated.

View Article and Find Full Text PDF

Heteroarene-fused anthraquinone derivatives represent a class of perspective anticancer drug candidates capable of targeting multiple vital processes including drug resistance. Taking advantage of previously demonstrated potential of amide derivatives of heteroarene-fused anthraquinones, we herein dissected the role of the heterocyclic core in antitumor properties. A new series of naphtho[2,3-f]indole-3- and anthra[2,3-b]thiophene-3-carboxamides was synthesized via coupling the respective acids with cyclic diamines.

View Article and Find Full Text PDF

We describe the synthesis of epi-oligomycin A, a (33)-diastereomer of the antibiotic oligomycin A. The structure of (33)-oligomycin A was determined by elemental analysis, spectroscopic studies, including 1D and 2D NMR spectroscopy, and mass spectrometry. Isomerization of C33 hydroxyl group led to minor changes in the potency against , , and filamentous fungi whereas the activity against decreased by approximately 20-fold compared to oligomycin A.

View Article and Find Full Text PDF

Derivatives of the anthraquinone (anthracene-9,10-dione) such as doxorubicin, mitoxantrone and others have proved great clinical efficacy for decades. Currently the search in this exceptionally productive chemical class is aimed at optimization of antitumor properties including circumvention of drug resistance. Previously we have reported that heteroarene-fused anthraquinones fused to a 5-membered heterocyclic ring are advantageous in killing drug resistant tumor cells.

View Article and Find Full Text PDF

Background: Heliomycin (resistomycin), an antibiotic with broad spectra of biological activities including antimicrobial, antifungal, antiviral, and antiproliferative. However, an extremely low solubility in aqueous media and in the majority of organic solvents limits its practical application.

Objective: Due to a high practical potential of heliomycin, new routes of structural modification are strongly required to improve its solubility.

View Article and Find Full Text PDF

A series of 3-aryl/hetarylquinoxaline-2-carbonitrile-1,4-dioxides was synthesized and evaluated against breast cancer cell lines in normoxia and hypoxia. Selected compounds in this series demonstrated better cytotoxicity and comparable hypoxia selectivity than tirapazamine. In contrast to Dox, quinoxaline-1,4-dioxides showed potent cytotoxicity against different MDR cells.

View Article and Find Full Text PDF

Chemical modifications of the anthraquinone scaffold are aimed at optimization of this exceptionally productive class of antitumor drugs. In particular, our previously reported anthra[2,3-b]furan-3-carboxamides demonstrated a high cytotoxic potency in cell culture and in vivo. In this study, we expanded our series of anthra[2,3-b]furan-3-carboxamides by modifying the key functional groups and dissected the structure-activity relationship within this chemotype.

View Article and Find Full Text PDF