Micromachines (Basel)
October 2024
Significant progress has been made in industrial defect detection due to the powerful feature extraction capabilities of deep neural networks (DNNs). However, the high computational cost and memory requirement of DNNs pose a great challenge to the deployment of industrial edge-side devices. Although traditional binary neural networks (BNNs) have the advantages of small storage space requirements, high parallel computing capability, and low power consumption, the problem of significant accuracy degradation cannot be ignored.
View Article and Find Full Text PDFComparison of the structural features and catalytic performance of bimetallic nanocatalysts will help to develop a unified understanding of structure-reaction relationships. The single-molecule fluorescence technique was utilized to reveal the differences in catalytic kinetics among PtRu bimetallic nanocatalysts and Pt and Ru monometallic nanocatalysts at the single particle level. The results show that bimetallic nanocatalysts have higher apparent rate constants and desorption rate constants relative to monometallic nanocatalysts, which leads to their higher catalytic activity.
View Article and Find Full Text PDFText pre-processing is an important component of a Chinese text classification. At present, however, most of the studies on this topic focus on exploring the influence of preprocessing methods on a few text classification algorithms using English text. In this paper we experimentally compared fifteen commonly used classifiers on two Chinese datasets using three widely used Chinese preprocessing methods that include word segmentation, Chinese specific stop word removal, and Chinese specific symbol removal.
View Article and Find Full Text PDFBackground: Edible flowers (EFs) represent valuable sources of both food and medicinal resources, holding the promise to enhance human well-being. Unfortunately, their significance is often overlooked. Ethnobotanical studies on the EFs are lacking in comparison with their botanical and phytochemical research.
View Article and Find Full Text PDFThe ongoing emergence of COVID-19 and the maturation of cold chain technology, have aided in the rapid development of the fresh produce e-commerce industry. Taking into account the characteristics of consumers' demand for fresh products, this paper constructs a location allocation model of a front warehouse for fresh e-commerce with the objective of minimizing the total cost. An improved immune optimization algorithm is proposed in this paper, and the effectiveness of the proposed algorithm is demonstrated by a real case study.
View Article and Find Full Text PDFIn recent years, convolutional neural network (CNN)-based object detection algorithms have made breakthroughs, and much of the research corresponds to hardware accelerator designs. Although many previous works have proposed efficient FPGA designs for one-stage detectors such as Yolo, there are still few accelerator designs for faster regions with CNN features (Faster R-CNN) algorithms. Moreover, CNN's inherently high computational complexity and high memory complexity bring challenges to the design of efficient accelerators.
View Article and Find Full Text PDFComput Intell Neurosci
October 2022
Recognition of Traditional Chinese Medicine (TCM) entities from different types of literature is challenging research, which is the foundation for extracting a large amount of TCM knowledge existing in unstructured texts into structured formats. The lack of large-scale annotated data makes unsatisfactory application of conventional deep learning models in TCM text knowledge extraction. Some other unsupervised methods rely on other auxiliary data, such as domain dictionaries.
View Article and Find Full Text PDFObtaining massive amounts of training data is often crucial for computer-assisted diagnosis using deep learning. Unfortunately, patient data is often small due to varied constraints. We develop a new approach to extract significant features from a small clinical gait analysis dataset to improve computer-assisted diagnosis of Chronic Ankle Instability (CAI) patients.
View Article and Find Full Text PDFAt present, short text classification is a hot topic in the area of natural language processing. Due to the sparseness and irregularity of short text, the task of short text classification still faces great challenges. In this paper, we propose a new classification model from the aspects of short text representation, global feature extraction and local feature extraction.
View Article and Find Full Text PDFMultitask learning (MTL) is an open and challenging problem in various real-world applications, such as recommendation systems, natural language processing, and computer vision. The typical way of conducting multitask learning is establishing some global parameter sharing mechanism among all tasks or assigning each task an individual set of parameters with cross-connections between tasks. However, for most existing approaches, the raw features are abstracted step by step, semantic information is mined from input space, and matching relation features are not introduced into the model.
View Article and Find Full Text PDFBackground: Medical trainees are required to learn many procedures following instructions to improve their skills. This study aims to investigate the pupillary response of trainees when they encounter moment of performance difficulty (MPD) during skill learning. Detecting the moment of performance difficulty is essential for educators to assist trainees when they need it.
View Article and Find Full Text PDFIntroduction: We evaluated the velocity profiles of patients with lateral collateral ligament (LCL) injuries of the ankle with a goal of understanding the control mechanism involved in walking.
Methods: We tracked motions of patients' legs and feet in 30 gait cycles recorded from patients with LCL injuries of the ankle and compared them to 50 gait cycles taken from normal control subjects. Seventeen markers were placed on the foot following the Heidelberg foot measurement model.
The satisfaction of employees is very important for any organization to make sufficient progress in production and to achieve its goals. Organizations try to keep their employees satisfied by making their policies according to employees' demands which help to create a good environment for the collective. For this reason, it is beneficial for organizations to perform staff satisfaction surveys to be analyzed, allowing them to gauge the levels of satisfaction among employees.
View Article and Find Full Text PDFComput Intell Neurosci
October 2021
Training models to predict click and order targets at the same time. For better user satisfaction and business effectiveness, multitask learning is one of the most important methods in e-commerce. Some existing researches model user representation based on historical behaviour sequence to capture user interests.
View Article and Find Full Text PDFComput Intell Neurosci
September 2021
In the rapid development of various technologies at the present stage, representative artificial intelligence technology has developed more prominently. Therefore, it has been widely applied in various social service areas. The application of artificial intelligence technology in tax consultation can optimize the application scenarios and update the application mode, thus further improving the efficiency and quality of tax data inquiry.
View Article and Find Full Text PDFBackground: Traditional Chinese medicine (TCM) clinical records contain the symptoms of patients, diagnoses, and subsequent treatment of doctors. These records are important resources for research and analysis of TCM diagnosis knowledge. However, most of TCM clinical records are unstructured text.
View Article and Find Full Text PDFParticle size is the most important index to reflect the crushing quality of ores, and the accuracy of particle size statistics directly affects the subsequent operation of mines. Accurate ore image segmentation is an important prerequisite to ensure the reliability of particle size statistics. However, given the diversity of the size and shape of ores, the influence of dust and light, the complex texture and shadows on the ore surface, and especially the adhesion between ores, it is difficult to segment ore images accurately, and under-segmentation can be a serious problem.
View Article and Find Full Text PDFRhizosphere microbial communities are known to be related to plant health; using such an association for crop management requires a better understanding of this relationship. We investigated rhizosphere microbiomes associated with wilt symptoms in two cotton cultivars. Microbial communities were profiled by amplicon sequencing, with the total bacterial and fungal DNA quantified by quantitative polymerase chain reaction based on the respective 16S and internal transcribed spacer primers.
View Article and Find Full Text PDFTraditional Chinese medicine (TCM) symptom normalization is difficult because the challenges of the symptoms having different literal descriptions, one-to-many symptom descriptions and different symptoms sharing a similar literal description. We propose a novel two-step approach utilizing hierarchical semantic information that represents the functional characteristics of symptoms and develop a text matching model that integrates hierarchical semantic information with an attention mechanism to solve these problems. In this study, we constructed a symptom normalization dataset and a TCM normalization symptom dictionary containing normalization symptom words, and assigned symptoms into 24 classes of functional characteristics.
View Article and Find Full Text PDFComput Intell Neurosci
July 2021
In recent years, image processing methods based on convolutional neural networks (CNNs) have achieved very good results. At the same time, many branch techniques have been proposed to improve accuracy. Aiming at the change detection task of remote sensing images, we propose a new network based on U-Net in this paper.
View Article and Find Full Text PDFRecent advances in convolutional neural networks (CNNs) have shown impressive results in semantic segmentation. Among the successful CNN-based methods, U-Net has achieved exciting performance. In this paper, we proposed a novel network architecture based on U-Net and atrous spatial pyramid pooling (ASPP) to deal with the road extraction task in the remote sensing field.
View Article and Find Full Text PDFJ Mech Behav Biomed Mater
February 2019
A heterogeneous method of coupled multiscale strength model is presented in this paper for calculating the strength of medical polyesters such as polylactide (PLA), polyglycolide (PGA) and their copolymers during degradation by bulk erosion. The macroscopic device is discretized into an array of mesoscopic cells. A polymer chain is assumed to stay in one cell.
View Article and Find Full Text PDFEmotional reactions towards products play an essential role in consumers' decision making, and are more important than rational evaluation of sensory attributes. It is crucial to understand consumers' emotion, and the relationship between sensory properties, human liking and choice. There are many inconsistencies between Asian and Western consumers in the usage of hedonic scale, as well as the intensity of facial reactions, due to different culture and consuming habits.
View Article and Find Full Text PDFThis paper studies the joint effect of V-matrix, a recently proposed framework for statistical inferences, and extreme learning machine (ELM) on regression problems. First of all, a novel algorithm is proposed to efficiently evaluate the V-matrix. Secondly, a novel weighted ELM algorithm called V-ELM is proposed based on the explicit kernel mapping of ELM and the V-matrix method.
View Article and Find Full Text PDFExtreme Learning Machine (ELM) is a fast-learning algorithm for a single-hidden layer feedforward neural network (SLFN). It often has good generalization performance. However, there are chances that it might overfit the training data due to having more hidden nodes than needed.
View Article and Find Full Text PDF