Publications by authors named "Dezhao Hao"

Poor dyeing performance has been a major defect of polylactic acid (PLA) fibers, which is caused by the lack of active chemical groups in PLA, and hinders the widespread use of this biodegradable material. Most of the existing chemical modification methods are not environmentally friendly and produce effluents. Herein, we report a green, efficient and continuous method to process PLA fibers surface diffuse atmospheric plasma for the improvement of its hydrophilicity and dyeing performance.

View Article and Find Full Text PDF

Current artificial nanochannels rely more on charge interactions for intelligent mass transport. Nevertheless, popular charged nanochannels would lose their advantages in long-term applications. Confined water, an indispensable transport medium in biological nanochannels, dominating the transport process in the uncharged nanochannels perfectly provides a new perspective.

View Article and Find Full Text PDF

Oil adhesion on ionic surfaces is ubiquitous in organisms and natural environments and is generally determined by surface chemical component and texture. However, when adhesion occurs, water molecules at the solid-liquid interface, acting as a bridge not only influenced by the structure and composition of the solid surface but also interacting with the neighboring oil molecules, play a crucial role but are always overlooked. Herein, we investigate the oil adhesion process on a carboxyl-terminated self-assembled monolayer surface (COOH-SAM) in ionic solutions and observe the interfacial water structure via surface-enhanced Raman scattering (SERS) in this system.

View Article and Find Full Text PDF

Barnacle exhibits high adhesion strength underwater for its glue with coupled adhesion mechanisms, including hydrogen bonding, electrostatic force, and hydrophobic interaction. Inspired by such adhesion mechanism, we designed and constructed a hydrophobic phase separation hydrogel induced by the electrostatic and hydrogen bond interaction assembly of PEI and PMAA. By coupling the effect of hydrogen bond, electrostatic force and hydrophobic interaction, our gel materials show an ultrahigh mechanical strength, which is up to 2.

View Article and Find Full Text PDF

Strong adhesion of hydrogels on solids plays an important role in stable working for various practical applications. However, current hydrogel adhesion suffers from poor interfacial bonding with solid surfaces. Here, we propose a general superwetting-assisted interfacial polymerization (SAIP) strategy to robustly anchor hydrogels onto solids by forming high-density interfacial covalent bonds.

View Article and Find Full Text PDF

Marine biofouling which interferes with normal marine operation and also causes huge economic loss has become a worldwide problem. With the development of society, there is an urgent need to develop non-toxic and efficient anti-fouling strategies. Capsaicin is an environmentally friendly antifouling agent, but controlling the stable release of capsaicin from the coating is still a challenge to be solved.

View Article and Find Full Text PDF

The spontaneous freezing of microdroplets around 233 K has long been regarded as the occurrence of homogeneous ice nucleation. The corresponding temperature has been directly regarded as the homogeneous ice nucleation temperature, which is an intrinsic character of water. However, many recent investigations indicate that the spontaneous freezing may be still induced by surfaces of the water microdroplets or the residual impurities inside.

View Article and Find Full Text PDF

Nickel-titanium (NiTi) alloys show broad applicability in biomedical fields. However, the unexpected aggregation of bacteria and the corrosion of body fluid on NiTi-based medical devices often lead to the leakage of nickel ions, resulting in inevitable allergic and cytotoxic activities. Therefore, the capture and detection of nickel ions are important to avoid serious adverse reactions caused by NiTi-based medical devices.

View Article and Find Full Text PDF

Marine biofouling is a ubiquitous and longstanding challenge that causes both economic and environmental problems. To address this, several antifouling strategies have been proposed, such as the release of biocidal compounds or surface chemical/physical design. Here we report a coating with surface structures (chemical heterogeneity) triggered by phase segregation, which endues the good antifouling properties, alongside robust mechanical properties, low underwater oil adhesion, and excellent optical transparency.

View Article and Find Full Text PDF

The dynamic spreading phenomenon of liquids is vital for both understanding wetting mechanisms and visual reaction time-related applications. However, how to control and accelerate the spreading process is still an enormous challenge. Here, a unique microchannel and nanofiber array morphology enhanced rapid superspreading (RSS) effect on animals' corneas with a superspreading time (ST) of 830 ms is found, and the respective roles of the nanofiber array and the microchannel in the RSS effect are explicitly demonstrated.

View Article and Find Full Text PDF

In nature, ultrafast signal transfer based on ion transport, which is the foundation of biological processes, commonly works in a hydrogel-water mixed mechanism. Inspired by organisms' hydrogel-based system, we introduce hydrogel into nanofluidics to prepare a hydrogel hybrid membrane. The introduction of a space charged hydrogel improves the ion selectivity evidently.

View Article and Find Full Text PDF

Hydrogel hybrids are one of the key factors in life activities and biomimetic science; however, their development and utilization are critically impeded by their inadequate adhesive strength and intricate process. In nature, barnacles can stick to a variety of solid surfaces firmly (adhesive strength above 300 kPa) using a hydrophobic interface, which inspires us to firmly combine hydrogels and polymers through introducing an adhesive layer. By spreading a hydrophobic liquid membrane directly, tough combination of a hydrogel and a polymer substrate could be achieved after one-step polymerization.

View Article and Find Full Text PDF

Hydrogels, as a representative of soft and biocompatible materials, have been widely used in biosensors, biomedical devices, soft robotics, and the marine industry. However, the ir-recoverability of hydrogels after dehydration, which causes the loss of original mechanical, optical, and wetting properties, has severely restricted their practical applications. At present, this critical challenge of maintaining hydrogels' accurate character has attracted less attention.

View Article and Find Full Text PDF

Anti-biofouling surfaces are of high importance owing to their crucial roles in biosensors and biomedical devices, especially in the marine industry. However, traditional anti-biofouling surfaces based on either the release of biocidal compounds or surface peeling will contaminate the environment. The outstanding performances of natural anti-biofouling surfaces motivate the development of new bioinspired antifouling surfaces.

View Article and Find Full Text PDF

Self-healing hydrogels have a great potential application in 3D printing, soft robotics, and tissue engineering. There have been a large number of successful strategies for developing hydrogels that exhibit rapid and autonomous recovery. However, developing a gel with an excellent self-healing performance within several seconds is still an enormous challenge.

View Article and Find Full Text PDF

A robust double-network (DN) hydrogel fabricated by a one-pot, one-step reaction is reported. The DN hydrogels not only have high mechanical strength and extremely low underwater oil adhesion, but also exhibit excellent characteristics, such as short processing duration, moderate swelling and free shaping. The DN hydrogel is durable in artificial sea water, and its mechanical property can be easily adjusted by adjusting the crosslinking agent concentration.

View Article and Find Full Text PDF