Background: Stanford type B-acute aortic dissection (type B-AAD) is often life-threatening without invasive surgery. Multilineage-differentiating stress enduring cell (Muse cells), which comprise several percent of mesenchymal stem cells (MSCs), are endogenous pluripotent-like stem cells that selectively home to damaged tissue and replace damaged/apoptotic cells by in-vivo differentiation.
Methods: Mortality, aortic diameter expansion, cell localization, cell differentiation, and inflammation of the dissected aorta were evaluated in type B-AAD model mice intravenously injected with human-Muse cells, -elastin-knockdown (KD)-Muse cells, -human leukocyte antigen-G (HLA-G)-KD-Muse cells, or MSCs, all without immunosuppressant.
Background: The current method for generating an animal model of spinal cord (SC) infarction is highly invasive and permits only short-term observation, typically limited to 28 days.
Objective: We aimed to establish a rat model characterised by long-term survival and enduring SC dysfunction by inducing selective ischaemic SC damage.
Methods: In 8-week-old male Wistar rats, a convection-enhanced delivery technique was applied to selectively deliver endothelin-1 (ET-1) to the anterior horn of the SC at the Th13 level, leading to SC infarction.
In embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs), the expression of an RNA-binding pluripotency-relevant protein, LIN28, and the absence of its antagonist, the tumor-suppressor microRNA (miRNA) let-7, play a key role in maintaining pluripotency. Muse cells are non-tumorigenic pluripotent-like stem cells residing in the bone marrow, peripheral blood, and organ connective tissues as pluripotent surface marker SSEA-3(+). They express pluripotency genes, differentiate into triploblastic-lineage cells, and self-renew at the single cell level.
View Article and Find Full Text PDFObjective: To evaluate the effect of intravenous administration of human multilineage-differentiating stress-enduring (Muse) cells on rat postoperative erectile dysfunction (ED) with cavernous nerve (CN) injury without an immunosuppressant.
Materials And Methods: Male Sprague-Dawley rats were randomised into three groups after CN crush injury. Either human-Muse cells, non-Muse mesenchymal stem cells (MSCs) (both 1.
DNA damage resulting from genotoxic injury can initiate cellular senescence, a state characterized by alterations in cellular metabolism, lysosomal activity, and the secretion of factors collectively known as the senescence-associated secretory phenotype (SASP). Senescence can have beneficial effects on our bodies, such as anti-cancer properties, wound healing, and tissue development, which are attributed to the SASP produced by senescent cells in their intermediate stages. However, senescence can also promote cancer and aging, primarily due to the pro-inflammatory activity of SASP.
View Article and Find Full Text PDFMultilineage-differentiating stress-enduring (Muse) cells are endogenous reparative pluripotent stem cells present in the bone marrow, peripheral blood, and organ connective tissues. We assessed the homing and therapeutic effects of systemically administered nafimestrocel, a clinical-grade human Muse cell-based product, without immunosuppressants in a neonatal hypoxic-ischemic (HI) rat model. HI injury was induced on postnatal day 7 (P7) and was confirmed by T2-weighted magnetic resonance imaging on P10.
View Article and Find Full Text PDFSpinal cord injury (SCI) is a serious neurological disorder, with the consequent disabilities conferred by this disorder typically persisting for life. Multilineage-differentiating stress-enduring (Muse) cells are endogenous stem cells that can be collected from various tissues as well as from mesenchymal stem cells (MSCs); additionally, these Muse cells are currently being used in clinical trials. The anti-inflammatory effect of stem cell transplantation prevents secondary injuries of SCI; however, its effect on Muse cells remains unclear.
View Article and Find Full Text PDFMultilineage-differentiating stress enduring (Muse) cells, non-tumorigenic endogenous pluripotent stem cells, reside in the bone marrow (BM), peripheral blood, and connective tissue as pluripotent surface marker SSEA-3(+) cells. They express other pluripotent markers, including Nanog, Oct3/4, and Sox2 at moderate levels, differentiate into triploblastic lineages, self-renew at a single cell level, and exhibit anti-inflammatory effects. Cultured mesenchymal stromal cells (MSCs) and fibroblasts contain several percent of SSEA-3(+)-Muse cells.
View Article and Find Full Text PDFSomatic stem cells are advantageous research targets for understanding the properties required to maintain stemness. Human bone marrow-mesenchymal stromal cells (BM-MSCs) were separated into pluripotent-like SSEA-3(+) Muse cells (Muse-MSCs) and multipotent SSEA-3(-) MSCs (MSCs) and were subjected to single-cell RNA sequencing analysis. Compared with MSCs, Muse-MSCs exhibited higher expression levels of the p53 repressor ; signal acceptance-related genes EGF, VEGF, PDGF, WNT, TGFB, INHB, and CSF; ribosomal protein; and glycolysis and oxidative phosphorylation.
View Article and Find Full Text PDFMultilineage-differentiating stress-enduring (Muse) cells are non-tumorigenic pluripotent-like stem cells that exhibit triploblastic differentiation and self-renewability at the single-cell level, and are collectable as pluripotent surface marker SSEA-3(+) from the bone marrow (BM), peripheral blood, and organ connective tissues. SSEA-3(+) cells from human amniotic membrane mesenchymal stem cells (hAMSCs) were compared with hBM-Muse cells. Similar to hBM-Muse cells, hAMSC-SSEA-3(+) cells expressed pluripotency genes (OCT3/4, NANOG, and SOX2), differentiated into triploblastic cells from a single cell, self-renewed, and exhibited non-tumorigenicity.
View Article and Find Full Text PDFStem cells undergo cytokine-driven differentiation, but this process often takes longer than several weeks to complete. A novel mechanism for somatic stem cell differentiation via phagocytosing 'model cells' (apoptotic differentiated cells) was found to require only a short time frame. Pluripotent-like Muse cells, multipotent mesenchymal stem cells (MSCs), and neural stem cells (NSCs) phagocytosed apoptotic differentiated cells via different phagocytic receptor subsets than macrophages.
View Article and Find Full Text PDFGap junctions (GJ) are suggested to support stem cell differentiation. The Muse cells that are applied in clinical trials are non-tumorigenic pluripotent-like endogenous stem cells, can be collected as stage-specific embryonic antigen 3 (SSEA-3+) positive cells from multiple tissues, and show triploblastic differentiation and self-renewability at a single cell level. They were reported to up-regulate pluripotency gene expression in suspension.
View Article and Find Full Text PDFIntroduction And Hypothesis: We investigated the effects of locally administered human multilineage-differentiating stress enduring (Muse) cells, nontumorigenic pluripotent-like endogenous stem cells, on bladder tissues, function, and nociceptive behavior in a chemically induced Hunner-type interstitial cystitis (HIC)-like rat model without immunosuppressant.
Methods: Chemical cystitis was induced by intravesical instillation of 0.2 N hydrochloride (HCl) for 15 min in female F344 rats.
Background: We recently reported that multilineage-differentiating stress enduring (Muse) cells intravenously administered after acute myocardial infarction (AMI), selectively engrafted to the infarct area, spontaneously differentiated into cardiomyocytes and vessels, reduced the infarct size, improved the left ventricular (LV) function and remodeling in rabbits. We aimed to clarify the efficiency of Muse cells in a larger animal AMI model of mini-pigs using a semi-clinical grade human Muse cell product.
Method And Result: Mini-pigs underwent 30 min of coronary artery occlusion followed by 2 weeks of reperfusion.
Rapid percutaneous coronary intervention for acute myocardial infarction (AMI) reduces acute mortality, but there is an urgent need for treatment of left ventricular dysfunction and remodeling after AMI to improve the prognosis. The myocardium itself does not have a high regenerative capacity, and it is important to minimize the loss of cardiomyocytes and maintain the cardiac function after AMI. To overcome these problems, attention has been focused on myocardial regeneration therapy using cells derived from bone marrow.
View Article and Find Full Text PDFHypoxic-ischemic encephalopathy (HIE) is a major cause of acute neonatal brain injury and can lead to disabling long-term neurological complications. Treatment for HIE is limited to supportive care and hypothermia within 6 h injury which is reserved for full-term infants. Preclinical studies suggest the potential for cell-based therapies as effective treatments for HIE.
View Article and Find Full Text PDFMuse cells are non-tumorigenic endogenous reparative pluripotent cells with high therapeutic potential. They are identified as cells positive for the pluripotent surface marker SSEA-3 in the bone marrow, peripheral blood, and connective tissue. Muse cells also express other pluripotent stem cell markers, are able to differentiate into cells representative of all three germ layers, self-renew from a single cell, and are stress tolerant.
View Article and Find Full Text PDFMesenchymal stem cells (MSCs) are multipotent cells that exist in mesenchymal tissues such as bone marrow and are able to differentiate into osteocytes, chondrocytes, and adipocytes. MSCs are generally collected as adherent cells on a plastic dish, and are positive for markers such as CD44, CD73, CD90, CD105 and CD166, and negative for CD11b, CD14, CD19, CD31, CD34, CD45, CD79a and HLA-DR. MSCs have been established from many kinds of mammals, but MSCs from amphibians have not yet been reported.
View Article and Find Full Text PDF