Publications by authors named "Deyu Bao"

Electrolysis of natural seawater driven by renewable energy is practically attractive for green hydrogen production. However, because precipitation initiated by an increase in local pH near to the cathode deactivates catalysts or blocks electrolyzer channels, limited catalysts are capable of operating with untreated, natural seawater (., pH 8.

View Article and Find Full Text PDF

Electrocatalytic acetylene hydrogenation to ethylene (E-AHE) is a promising alternative for thermal-catalytic process, yet it suffers from low current densities and efficiency. Here, we achieved a 71.2 % Faradaic efficiency (FE) of E-AHE at a large partial current density of 1.

View Article and Find Full Text PDF

The growth of all-inorganic perovskite single-crystal microstructures on substrates is a promising approach for constructing photonic and electronic microdevices. However, current preparation methods typically involve direct control of ions or atoms, which often depends on specific lattice-matched substrates for epitaxial growth and other stringent conditions that limit the mild preparation and flexibility of device integration. Herein, we present the on-substrate fabrication of CsPbBr single-crystal microstructures obtained via a nanoparticle self-assembly assisted low-temperature sintering (NSALS) method.

View Article and Find Full Text PDF

In this paper, the urchin-like CeO/ZnO@Au photocatalyst was rationally designed and prepared through hydrothermal method, chemical precipitation and photo reduction deposition. The optimal photocatalyst (CZA8) degraded Rhodamine B (RhB), 4-nitrophenol (4-NP) and Naproxen (NPX) about 100% within 20 min, 91.4% within 60 min and 88.

View Article and Find Full Text PDF

Owing to the intrinsically good near-room-temperature thermoelectric performance, β-AgSe has been considered as a promising alternative to n-type BiTe thermoelectric materials. Herein, we develop an energy- and time-efficient wet mechanical alloying and spark plasma sintering method to prepare porous β-AgSe with hierarchical structures including high-density pores, a metastable phase, nanosized grains, semi-coherent grain boundaries, high-density dislocations, and localized strains, leading to an ultralow lattice thermal conductivity of ∼0.35 W m K at 300 K.

View Article and Find Full Text PDF

Searching for new-type, eco-friendly, and Earth-abundant thermoelectric materials, which can be used as an alternative to the high-cost bismuth telluride, is important for near-room-temperature applications. In this work, nanostructured monoclinic Cu2Se with a low carrier concentration has been synthesized by a wet mechanical alloying process combined with spark plasma sintering. Such a low carrier concentration, which originates from the effectively suppressed Cu deficiencies during the fabrication process, induces a relatively low electrical conductivity and carrier thermal conductivity.

View Article and Find Full Text PDF