Publications by authors named "Deyi Wu"

Currently, LCCP is widely present in environmental media as well as animal and human samples, suggesting that exposure to LCCP may have posed a threat to the health of animals and humans. Skin is one of the important pathways for LCCP exposure. To clarify the effects of LCCP exposure on the skin, we have utilized two skin cell models, HaCaT and L929, to investigate the complex impacts of LCCP exposure on skin cell senescence and its potential regulatory mechanism(s).

View Article and Find Full Text PDF

Calcium ions (Ca) regulate cell proliferation and differentiation and participate in various physiological activities of cells. The calcium transfer protein inositol 1,4,5-triphosphate receptor (IPR), located between the endoplasmic reticulum (ER) and mitochondria, plays an important role in regulating Ca levels. However, the mechanism by which IPR1 affects porcine meiotic progression and embryonic development remains unclear.

View Article and Find Full Text PDF

Hexabromocyclododecane (HBCD) has been detected in animals and humans blood. As an environment contamination, HBCD damages tissues and organs in animals and humans and produces cytotoxicity. In current study, we explored the effect of HBCD on premature testicular aging in vivo and in vitro.

View Article and Find Full Text PDF

Aflatoxin B1 (AFB1) is a recognized hazard environmental contaminant mainly found in cereal and fruits. The toxicity of AFB1 exposure to various organs has been revealed in some literature. In current study, we explored the effect of AFB1 exposure on premature aging/senescence of skin.

View Article and Find Full Text PDF

Background: Plastic pollution is greatly serious in the ocean and soil. Microplastics (MPs) degraded from plastic has threatened animals and humans health. The accumulation of MPs in the tissues and blood in animals and humans has been found.

View Article and Find Full Text PDF

The dynamic balance of Ca in oocytes promotes the recovery of the meiotic arrest phase, consequently promoting oocyte maturation. Hence, the analysis of the maintenance and role of calcium homeostasis in oocytes has important guiding significance for obtaining high-quality eggs and maintaining the development of preimplantation embryos. Inositol 1,4,5-trisphosphate receptors (IPRs) are calcium channel proteins that regulate the dynamic balance between the endoplasmic reticulum (ER) and mitochondrial Ca.

View Article and Find Full Text PDF

In vitro-cultured oocytes are separated from the follicular micro-environment in vivo and are more vulnerable than in vivo oocytes to changes in the external environment. This vulnerability disrupts the homeostasis of the intracellular environment, affecting oocyte meiotic completion, and subsequent embryonic developmental competence in vitro. Glycine, one of the main components of glutathione (GSH), plays an important role in the protection of porcine oocytes in vitro.

View Article and Find Full Text PDF

Senescence is associated with a decline in physiological function, which is accompanied by onset of diseases. Growth hormone (GH) is a class of growth-promoting cytokines with reduced secretion in aging populations. However, the effect of senescence on GH bioactivity is not fully understood in human mesenchymal stem cells (hMSCs).

View Article and Find Full Text PDF

At present, high environmental temperature is the main factor endangering animal production, growth and development. Therefore, the harmful effects of heat stress led by hot environment on livestock have attracted much attention. In this work, the cellar property and signaling property of epidermal growth factor (EGF) below heat stress remains unclear in swine testicular cells.

View Article and Find Full Text PDF

Defluoridation of water is still challenging due to the fluoride pollution of both groundwater and surface water worldwide. In this study, lanthanum-modified zeolite (LMZ) was synthesized from coal fly ash and was investigated for fluoride removal from water by conducting batch and column experiments. Our results indicated that the process of fluoride adsorption was endothermic and the adsorption kinetics on LMZ followed the pseudo-second-order model.

View Article and Find Full Text PDF

At present, heat stress caused by the thermal environment is the main factor that endangers the reproductive function of animals. Growth hormone (GH) is a polypeptide hormone, the biological function of reproductive organs has been reported, and it has many important physiological functions in the body. However, so far, the behavior and signal transduction of GH in testicular cells under heat stress are still unclear.

View Article and Find Full Text PDF

Porcine growth hormone (pGH) has many important biological functions and roles, and the biological activity of pGH is closely related with its cell behavior and characteristics. However, so far, the behavior of pGH in swine testicular cell remains unclear. For this, in the current work, the swine testicular cell line (ST) was used as an in vitro model, and CLSM (Confocal laser scanning microscope), IFA (Indirect immunofluorescence assay), FCM (Flow cytometry) and WB (Western-blotting) were used to explore the pGH's cell behivior and function, and the results showed that pGH and GHR could internalize into ST cell and transported to the nucleus.

View Article and Find Full Text PDF

To enhance the reducing sugar yield in enzymatic hydrolysis, various factors (NaOH concentration, solid content and pre-treatment time) that affect the pre-treatment process were investigated and evaluated based on the reducing sugar yield of the subsequent enzymatic hydrolysis. The enzymatic hydrolysis was based on the cellulase from Trichoderma reesi ATCC 26921, the optimum NaOH pre-treatment conditions were an NaOH concentration of 1.0% (w/w), a solid content of 5.

View Article and Find Full Text PDF

Modification of graphene oxide (GO) with polyethyleneimine (PEI) has been studied to develop a GO/PEI sponge material that not only performs well in the adsorption of Cu(II) but also is easily separated from water. The results showed that GO had excellent affinity for PEI, and GO/PEI prepared at pH 9.0 using PEI with a MW of 70,000 was shown to be a good adsorbent for Cu(II).

View Article and Find Full Text PDF

Hyperthermophilic microorganisms play a key role in the hyper-thermophilic composting (HTC) technique. However, little information is available about the hyperthermophilic microorganisms prevalent in HTC systems, except for the Calditerricola satsumensis, Calditerricola yamamurae, and Thermaerobacter. To obtain effective hyper-thermophilic microorganisms, a continuous thermo-acclimation of the suitable thermophilic microorganisms was demonstrated in this study.

View Article and Find Full Text PDF

Contamination of water streams by dyes and heavy metals has become a major problem due to their persistence, accumulation, and toxicity. Therefore, it is essential to eliminate and/or reduce these contaminants before discharge into the natural environment. In recent years, 3D graphene has drawn intense research interests owing to its large surface area, superior charge conductivity, and thermal conductivity properties.

View Article and Find Full Text PDF

The removal of fluoride from wastewater is essential as the excess accumulation of fluoride in environment is harmful to the health of humans. In this study, the defluorination of water by aluminum hydroxide-coated zeolite (AHZ), which was synthesized from coal fly ash, was investigated in batches. The Langmuir maximum adsorption capacity of fluoride by AHZ reached 18.

View Article and Find Full Text PDF

Wind-driven waves and currents in shallow lakes frequently trigger the resuspension of sediments in the photic layer, which is characterized with a high pH and high dissolved organic carbon (DOC) concentration. The mechanism of phosphorus-inactivating agents (PIAs) immobilizing phosphorus under the coupled influence of pH and DOC is not clarified, and the applicability of PIAs in eutrophic shallow lakes is thus still doubtful. We found that, under the coupled influence of pH and DOC, the uptake of phosphate by LMZ was affected mainly by pH at low DOC concentrations and by DOC at high DOC concentrations.

View Article and Find Full Text PDF

Phosphorus-inactivating agents (PIAs) as geoengineering tools in lakes have been investigated extensively, but PIA resuspension in the photic layer occurs frequently in shallow lakes and little is known about the influence of algae on PIA performance. Our results proved that algae increased the dissolved oxygen, pH and dissolved organic carbon concentration substantially. In the absence of sediment, lanthanum modified zeolite (LMZ) as a representative PIA and algae could deplete dissolved inorganic phosphorus (DIP) from water but the former was faster than the latter.

View Article and Find Full Text PDF

Lanthanum-modified bentonite (LMB) is a widely used phosphorus-inactivating agent in lakes. However, dissolved organic carbon (DOC) exists ubiquitously in lakes, and its influence on phosphate binding is still not adequately understood. Our results showed that both phosphate and DOC can be adsorbed by LMB.

View Article and Find Full Text PDF

Lanthanum (hydr)oxide-based materials are attractive as highly efficient adsorbents for phosphate removal from both sewage and lake environment. However, dissolved organic carbon (DOC) coexists in the waters and exact information is still lacking on how DOC influence the phosphate adsorption process. In this study, competitive adsorption of phosphate and DOC on lanthanum modified zeolite (LMZ) was investigated using humic acid as the representative.

View Article and Find Full Text PDF

The separation of urine at source for phosphorus (P) recovery is attractive taking into account the high P concentration and small volume. However, the treatment of urine is still challenging due to its unpleasant odor and hygiene problems. Because the above problems could be solved by acidification to keep the pH of urine below 4, we propose a novel strategy to recover P from acidified urine using tailored hydrous zirconia-coated magnetite nanoparticles (FeO@ZrO).

View Article and Find Full Text PDF

Phosphorus-inactivating agents (PIAs) have increasingly been applied and extensively investigated to control internal phosphorus loading in lakes. However, little is known about the behavior of PIA-amended sediment in terms of phosphorus immobilization and release when the sediment is resuspended in the photic layer, whose environment differs from the lake bed. Lanthanum-modified bentonite (LMB) is a popular PIA product.

View Article and Find Full Text PDF

The objective of this study was to develop a novel graphene oxide (GO)-based adsorbent by loading the cationic surfactant hexadecyltrimethylammonium bromide (HDTMA) to simultaneously scavenge copper ion, a charged species, and bisphenol A, an uncharged organic compound, from water. The HDTMA modification process was studied and the GO/HDTMA composites characterized using SEM (scanning electron microscopy), XRD (X-ray diffraction), XPS (X-ray photoelectron spectroscopy) and FTIR (Fourier Transform Infrared) spectroscopy. Within the concentration range of 6.

View Article and Find Full Text PDF

Graphene materials are high-performance adsorbents for water and soil remediation, whose oxygen containing groups bind to metal ions intensely. In this study, we prepared carboxylated graphene oxide (GO-OCHCOOH) sponge and investigated the adsorption behaviors of Cu on it by both experimental and computational approaches. Carboxylation largely improved the adsorption capacity from 23.

View Article and Find Full Text PDF