Publications by authors named "Deyana Ivanova"

Article Synopsis
  • Dendritic cells (DCs) are essential for regulating immune responses in tumors, especially in clear-cell renal-cell carcinoma (ccRCC), but current research has gaps in understanding their role in immune activation.
  • The study identified key genes related to activated DCs using RNA-seq data and developed a prognostic model that includes five specific genes, validated using several external data sets.
  • This model not only predicts patient outcomes in advanced ccRCC but also shows associations with tumor progression and how patients might respond to therapies like the BET inhibitor JQ1.
View Article and Find Full Text PDF

Normal reproductive function and fertility rely on the rhythmic secretion of gonadotropin-releasing hormone (GnRH), which is driven by the hypothalamic GnRH pulse generator. A key regulator of the GnRH pulse generator is the posterodorsal subnucleus of the medial amygdala (MePD), a brain region that is involved in processing external environmental cues, including the effect of stress. However, the neuronal pathways enabling the dynamic, stress-triggered modulation of GnRH secretion remain largely unknown.

View Article and Find Full Text PDF
Article Synopsis
  • The tumor microenvironment (TME) significantly influences tumor behavior, and this study investigates how DNA methylation impacts TME in clear-cell renal cell carcinoma (ccRCC).
  • Researchers identified four key methylation-driven genes (TME-MDGs) through DNA methylation and RNA-seq analysis, confirming their downregulation in tumor samples.
  • The findings suggest these genes are linked to patient response to immunotherapy and targeted treatments like pazopanib, offering potential new targets for ccRCC therapies.
View Article and Find Full Text PDF

Psychosocial stress negatively impacts reproductive function by inhibiting pulsatile luteinizing hormone (LH) secretion. The posterodorsal medial amygdala (MePD) is responsible in part for processing stress and modulating the reproductive axis. Activation of the neurokinin 3 receptor (NK3R) suppresses the gonadotropin-releasing hormone (GnRH) pulse generator, under hypoestrogenic conditions, and NK3R activity in the amygdala has been documented to play a role in stress and anxiety.

View Article and Find Full Text PDF

The exact neural construct underlying the dynamic secretion of gonadotrophin-releasing hormone (GnRH) has only recently been identified despite the detection of multiunit electrical activity volleys associated with pulsatile luteinising hormone (LH) secretion four decades ago. Since the discovery of kisspeptin/neurokinin B/dynorphin neurons in the mammalian hypothalamus, there has been much research into the role of this neuronal network in controlling the oscillatory secretion of gonadotrophin hormones. In this review, we provide an update of the progressive application of cutting-edge techniques combined with mathematical modelling by the neuroendocrine community, which are transforming the functional investigation of the GnRH pulse generator.

View Article and Find Full Text PDF

Corticotropin-releasing hormone (CRH) neurons in the paraventricular nucleus of the hypothalamus (PVN) are central to the stress response. Chemogenetic activation of PVN CRH neurons decreases LH pulse frequency but the mechanism is unknown. In the present study, optogenetic stimulation of PVN CRH neurons suppressed LH pulse frequency in estradiol-replaced ovariectomized CRH-cre mice, and this effect was augmented or attenuated by intra-PVN GABAA or GABAB receptor antagonism, respectively.

View Article and Find Full Text PDF

Optical systems and genetic engineering technologies have made it possible to control neurons and unravel neuronal circuit behavior with high temporal and spatial resolution. The application of optogenetic strategies to understand the physiology of kisspeptin neuronal circuits has evolved in recent years among the neuroendocrine community. Kisspeptin neurons are fundamentally involved in controlling mammalian reproduction but also are implicated in numerous other physiological processes, including but not limited to feeding, energy expenditure, core body temperature and behavior.

View Article and Find Full Text PDF

Neuropeptides are one of the largest and most diverse families of signaling molecules in animals and, accordingly, they regulate many physiological processes and behaviors. Genome and transcriptome sequencing has enabled the identification of genes encoding neuropeptide precursor proteins in species from a growing variety of taxa, including bilaterian and non-bilaterian animals. Of particular interest are deuterostome invertebrates such as the phylum Echinodermata, which occupies a phylogenetic position that has facilitated reconstruction of the evolution of neuropeptide signaling systems in Bilateria.

View Article and Find Full Text PDF

Psychological stress is linked to infertility by suppressing the hypothalamic GnRH pulse generator. The posterodorsal subnucleus of the medial amygdala (MePD) is an upstream regulator of GnRH pulse generator activity and displays increased neuronal activation during psychological stress. The MePD is primarily a GABAergic nucleus with a strong GABAergic projection to hypothalamic reproductive centers; however, their functional significance has not been determined.

View Article and Find Full Text PDF

The posterodorsal subnucleus of the medial amygdala (MePD) is an upstream modulator of the hypothalamic-pituitary-gonadal (HPG) and hypothalamic-pituitary-adrenal (HPA) axes. Inhibition of MePD urocortin-3 (Ucn3) neurons prevents psychological stress-induced suppression of luteinizing hormone (LH) pulsatility while blocking the stress-induced elevations in corticosterone (CORT) secretion in female mice. We explore the neurotransmission and neural circuitry suppressing the gonadotropin-releasing hormone (GnRH) pulse generator by MePD Ucn3 neurons and we further investigate whether MePD Ucn3 efferent projections to the hypothalamic paraventricular nucleus (PVN) control CORT secretion and LH pulsatility.

View Article and Find Full Text PDF
Article Synopsis
  • Kisspeptin neurons in the arcuate nucleus of the hypothalamus are crucial for triggering gonadotrophin-releasing hormone (GnRH) pulses, which are essential for reproductive function.
  • Research indicates that kisspeptin in the medial amygdala (MePD) modulates this process, with optogenetics showing that stimulating MePD kisspeptin increases luteinizing hormone pulse frequency.
  • The study combines optogenetic stimulation and pharmacological antagonism to explore the neurotransmission pathways, revealing that both GABA and glutamate are vital for the modulation of GnRH pulses by amygdala kisspeptin neurons.
View Article and Find Full Text PDF

Post-traumatic stress disorder impedes pubertal development and disrupts pulsatile LH secretion in humans and rodents. The posterodorsal sub-nucleus of the medial amygdala (MePD) is an upstream modulator of the hypothalamic gonadotropin-releasing hormone (GnRH) pulse generator, pubertal timing, as well as emotional processing and anxiety. Psychosocial stress exposure alters neuronal activity within the MePD increasing the expression of Urocortin3 (Ucn3) and its receptor corticotropin-releasing factor type-2 receptor (CRFR2) while enhancing the inhibitory output from the MePD to key hypothalamic reproductive centres.

View Article and Find Full Text PDF

Pulsatile GnRH release is essential for normal reproductive function. Kisspeptin secreting neurons found in the arcuate nucleus, known as KNDy neurons for co-expressing neurokinin B, and dynorphin, drive pulsatile GnRH release. Furthermore, gonadal steroids regulate GnRH pulsatile dynamics across the ovarian cycle by altering KNDy neurons' signalling properties.

View Article and Find Full Text PDF

Psychosocial stress disrupts reproduction and interferes with pulsatile LH secretion. The posterodorsal medial amygdala (MePD) is an upstream modulator of the reproductive axis and stress. Corticotropin-releasing factor type 2 receptors (CRFR2s) are activated in the presence of psychosocial stress together with increased expression of the CRFR2 ligand Urocortin3 (Ucn3) in the MePD of rodents.

View Article and Find Full Text PDF

Progesterone can block estrogen-induced luteinising hormone (LH) surge secretion and can be used clinically to prevent premature LH surges. The blocking effect of progesterone on the LH surge is mediated through its receptor in the anteroventral periventricular nucleus (AVPV) of the hypothalamus. However, the underlying mechanisms are unclear.

View Article and Find Full Text PDF

Context: Maternal obesity increases the risk of preterm delivery. Obesity is known to be associated with altered lipid metabolism.

Objective: To investigate the associations between high maternal triglyceride (mTG) levels during early pregnancy and risks of preterm delivery stratified by early pregnancy body mass index (BMI).

View Article and Find Full Text PDF