Publications by authors named "Deyaa Abol-Fotouh"

Article Synopsis
  • Biopolymers have mainly been used for linear optical responses in photonics, but this study expands their use into non-linear optics through innovative crystal integration.
  • The researchers create a photon upconverting biomaterial using bacterial cellulose hydrogel and specific crystals that enhance light conversion from red to blue wavelengths.
  • This newly developed material is sustainable, as it allows for the recovery of most components for reuse and can be biodegraded at the end of its life cycle.
View Article and Find Full Text PDF

Bacterial cellulose (BC) is gathering increased attention due to its remarkable physico-chemical features. The high biocompatibility, hydrophilicity, and mechanical and thermal stability endorse BC as a suitable candidate for biomedical applications. Nonetheless, exploiting BC for tissue regeneration demands three-dimensional, intricately shaped implants, a highly ambitious endeavor.

View Article and Find Full Text PDF

The persistent water treatment and separation challenge necessitates innovative and sustainable advances to tackle conventional and emerging contaminants in the aquatic environment effectively. Therefore, a unique three-dimensional (3D) network composite film (BC-KC) comprised of bacterial nanocellulose (BC) incorporated nano-kaolinite clay particles (KC) was successfully synthesized via an in-situ approach. The microscopic characterization of BC-KC revealed an effective integration of KC within the 3D matrix of BC.

View Article and Find Full Text PDF

This work deals with the synthesis of zinc oxide nanoparticles/activated carbon (ZnO NPs/AC) nanocomposites with different weight ratios (3:1, 1:1, and 1:3), where the antimicrobial, antiviral, and cytotoxicity impact of the formulated nanocomposites were evaluated versus the crude ZnO and AC samples. The formula (3:1; designated Z3C1) exhibited the utmost bactericidal effect against Gram positive group, unicellular and filamentous fungi. Regarding Gram negative group, the sample (Z3C1) was remarkably effective against Klebsiella pneumonia, unlike the case of Escherichia coli.

View Article and Find Full Text PDF

In the recent years, huge efforts have been conducted to conceive a cost-effective production process of the bacterial nanocellulose (BNC), thanks to its marvelous properties and broadening applications. Herein, we unveiled the impact of gamma irradiation on the BNC yield by a novel bacterial strain Komagataeibacter hansenii KO28 which was exposed to different irradiation doses via a designed scheme, where the productivity and the structural properties of the BNC were inspected. After incubation for 240 h, the highest BNC yield was perceived from the culture treated twice with 0.

View Article and Find Full Text PDF

This study was aimed to produce a high compatible thermoalkaliphilic lipase (TA) with detergents from new thermophilic bacterial strains utilizing fish wastes for industrial application. Among bacterial isolates, a new Geobacillus stearothermophilus FMR12 efficiently utilized fish wastes at a concentration of 20% (w/v), exhibiting highly lipolytic activity at extreme thermal and alkaline pH conditions. Optimized fermentation parameters of TA lipase production were ascertained, promoting the productivity of the TA lipase from 424 to 1038 U/ml.

View Article and Find Full Text PDF

Enormous masses of keratinous wastes are annually accumulated in the environment as byproducts of poultry processing and agricultural wastes. Keratin is a recalcitrant fibrous protein, which represents the major constituent of various keratin-rich wastes, which released into the environment in the form of feathers, hair, wool, bristle, and hooves. Chemical treatment methods of these wastes resulted in developing many hazardous gases and toxins to the public health, in addition to the destruction of several amino acids.

View Article and Find Full Text PDF

Bacterial nanocellulose (BNC) has been drawing enormous attention because of its versatile properties. Herein, we shed light on the BNC production by a novel bacterial isolate (MD1) utilizing various agro-industrial wastes. Using 16S rRNA nucleotide sequences, the isolate was identified as Komagataeibacter saccharivorans MD1.

View Article and Find Full Text PDF

Waste heat to electricity conversion using thermoelectric generators is emerging as a key technology in the forthcoming energy scenario. Carbon-based composites could unleash the as yet untapped potential of thermoelectricity by combining the low cost, easy processability, and low thermal conductivity of biopolymers with the mechanical strength and good electrical properties of carbon nanotubes (CNTs). Here we use bacteria in environmentally friendly aqueous media to grow large area bacterial nanocellulose (BC) films with an embedded highly dispersed CNT network.

View Article and Find Full Text PDF

Thermophilic and alkaliphilic lipases are meeting a growing global attention as their increased importance in several industrial fields. Over 23 bacterial strains, novel strain with high lipolytic activity was isolated from Southern Sinai, Egypt, and it was identified as Geobacillus thermoleovorans DA2 using 16S rRNA as well as morphological and biochemical features. The lipase was produced in presence of fatty restaurant wastes as an inducing substrate.

View Article and Find Full Text PDF