Oral squamous cell carcinoma (OSCC), a type of malignant tumour that primarily occurs in the oral mucosa, has drawn considerable attention owing to its aggressive growth and potentially high metastatic rate. Surgical resection is the primary treatment method for OSCC and is typically combined with radiation therapy and chemotherapy. microRNA-149-3p (miR-149) is a negative regulator of the Pi3k/Akt pathway and can effectively inhibit the proliferation of tumour cells.
View Article and Find Full Text PDFBacterial resistance and excessive inflammation are common issues that hinder wound healing. Antimicrobial peptides (AMPs) offer a promising and versatile antibacterial option compared to traditional antibiotics, with additional anti-inflammatory properties. However, the applications of AMPs are limited by their antimicrobial effects and stability against bacterial degradation.
View Article and Find Full Text PDFSkin is the first barrier against external threats, and skin immune dysfunction leads to multiple diseases. Psoriasis is an inflammatory, chronic, common, immune-related skin disease that affects more than 125 million people worldwide. RNA interference (RNAi) therapy is superior to traditional therapies, but rapid degradation and poor cell uptake are the greatest obstacles to its clinical transformation.
View Article and Find Full Text PDFCancer poses a great threat to human life, and current cancer treatments, such as radiotherapy, chemotherapy, and surgery, have significant side effects and limitations that hinder their application. Nucleic acid nanomaterials have specific spatial configurations and can be used as nanocarriers to deliver different therapeutic drugs, thereby enabling various biomedical applications, such as biosensors and cancer therapy. In recent decades, a variety of DNA nanostructures have been synthesized, and they have demonstrated remarkable potential in cancer therapy related applications, such as DNA structures, tetrahedral framework nucleic acids, and dynamic DNA nanostructures.
View Article and Find Full Text PDFNanomaterials are often used as immunomodulators because they can be tailored by a controllable process. In this work, a complex based on a tetrahedral framework nucleic acid delivery system and MicroRNA-155, known as T-155, is synthesized for the modulation of immunosuppression. In vivo, T-155 ameliorated spleen and thymus damage and hematopoiesis suppression in cyclophosphamide-induced immunosuppressed mice by promoting T-cell proliferation to resist oxidative stress.
View Article and Find Full Text PDFBladder outlet obstruction (BOO) is a prevalent condition arising from urethral stricture, posterior urethral valves, and benign prostatic hyperplasia. Long-term obstruction can lead to bladder remodeling, which is characterized by inflammatory cell infiltration, detrusor hypertrophy, and fibrosis. Until now, there are no efficacious therapeutic options for BOO-induced remodeling.
View Article and Find Full Text PDFAs major complications of chemoradiotherapy, myelosuppression and hematopoietic-system damage severely affect immunologic function and can delay or even terminate treatment for cancer patients. Although several specific cytokines have been used for hematopoiesis recovery, their effect is limited, and they may increase the risk of tumor recurrence. In this study, osteogenic growth peptide functionalized tetrahedral framework nucleic-acid nanostructures (OGP-tFNAs) are prepared; they combine the positive hematopoiesis stimulating effect of OGP and the drug carrying function of tFNAs.
View Article and Find Full Text PDFThe significant clinical feature of bisphosphonate-related osteonecrosis of the jaw (BRONJ) is the exposure of the necrotic jaw. Other clinical manifestations include jaw pain, swelling, abscess, and skin fistula, which seriously affect the patients' life, and there is no radical cure. Thus, new methods need to be found to prevent the occurrence of BRONJ.
View Article and Find Full Text PDFACS Appl Mater Interfaces
November 2021
Type 1 diabetes (T1D) is caused by breakdowns of central and peripheral immune tolerance and destructions of insulin-producing β-cells. Conventional insulin injection cannot cure the disease. Regulatory immune cells, including regulatory T-cells (Tregs) and regulatory B-cells (Bregs), play critical roles in immune tolerance.
View Article and Find Full Text PDFGouty arthritis is a very familiar inflammatory arthritis. Controlling inflammation is the key to preventing gouty arthritis. However, colchicine, the most highly represented drug used in clinical practice, has strict contraindications owing to some severe side effects.
View Article and Find Full Text PDFThe facial nerve is a crucial nerve in the maxillofacial region and is vulnerable to damage. As a consequence of the complications during nerve restoration, existing remedies have certain limitations, thus the treatment of facial nerve injury is always a perplexing task for people. Regulation of Schwann cells is always the breakpoint of neurorestoration since Schwann cells count a great deal in injured nerve repair.
View Article and Find Full Text PDFAs one of the most frequent autoimmune diseases, Sjogren's syndrome (SS) is characterized by overactive lymphocytic infiltration in the exocrine glands, with ensuing dry mouth and dry eyes. Unfortunately, so far, there are no appropriate therapies without causing overall immunosuppression. Tetrahedral framework nucleic acids (tFNAs) were regarded as promising nanoscale materials whose immunomodulatory capabilities have already been verified.
View Article and Find Full Text PDFACS Appl Mater Interfaces
September 2021
Insulin resistance (IR) is one of the essential conditions in the development of type 2 diabetes mellitus (T2DM). IR occurs in hepatic cells when the insulin receptor substrate-1 (IRS-1)/phosphatidylinositol 3-kinase (PI3K)/protein kinase B (Akt) signaling pathway is downregulated; thus, activating this pathway can significantly improve insulin sensitivity and ameliorate T2DM. Tetrahedral framework nucleic acids (tFNAs), a DNA nanomaterial, are synthesized from four single-stranded DNA molecules.
View Article and Find Full Text PDFObjectives: The nano-hydroxyapatite (nHAp) is widely used to develop imaging probes and drug carriers due to its excellent bioactivity and biocompatibility. However, traditional methods usually need cumbersome and stringent conditions such as high temperature and post-modification to prepare the functionalized nHAp, which do not benefit the particles to enter cells due to the increased particle size. Herein, a biomimetic synthesis strategy was explored to achieve the AS1411-targeted tumour dual-model bioimaging using DNA aptamer AS1411 as a template.
View Article and Find Full Text PDFObesity-induced insulin resistance is the hallmark of metabolic syndrome, and chronic, low-grade tissue inflammation links obesity to insulin resistance through the activation of tissue-infiltrating immune cells. Current therapeutic approaches lack efficacy and immunomodulatory capacity. Thus, a new therapeutic approach is needed to prevent chronic inflammation and alleviate insulin resistance.
View Article and Find Full Text PDFACS Appl Mater Interfaces
June 2021
In a search for a solution to large-area soft and hard tissue defects, whether or not tissue regeneration or tissue-substitutes transplantation is used, the problems with angiogenesis need to be solved urgently. Thus, a new and efficient proangiogenic approach is needed. Nanoengineering systems have been considered one of the most promising approaches.
View Article and Find Full Text PDFA failure in immune tolerance leads to autoimmune destruction of insulin-producing β-cells, leading to type 1 diabetes (T1D). Inhibiting autoreactive T cells and inducing regulatory T cells (Tregs) to re-establish immune tolerance are promising approaches to prevent the onset of T1D. Here, we investigated the ability of tetrahedral framework nucleic acids (tFNAs) to induce immune tolerance and prevent T1D in nonobese diabetic (NOD) mice.
View Article and Find Full Text PDFObjectives: Anti-microbial peptides (AMPs) have been comprehensively investigated as a novel alternative to traditional antibiotics against microorganisms. Meanwhile, Tetrahedral DNA nanostructures (TDNs) have gained attention in the field of biomedicine for their premium biological effects and transportation efficiency as delivery vehicles. Hence, in this study, TDN/Histatin 5 (His-5) was synthesized and the transport efficiency and anti-fungal effect were measured to evaluate the promotion of His-5 modified by TDNs.
View Article and Find Full Text PDFACS Appl Mater Interfaces
March 2021
Conventional antiangiogenetic inhibitors suffered from poor delivery problems that result in unsatisfactory antitumor treatment efficacy. Although the liposomes or nanomaterial-based delivery systems can improve the therapeutic efficacy of antiangiogenic molecules, the assembly process is far too complex. Herein, a nanomaterial or a new nanodrug that could work without the help of a carrier and could be easily synthesized is needed.
View Article and Find Full Text PDFBackground: Diabetic osteoporosis (DOP) is a systemic metabolic bone disease caused by diabetes mellitus (DM). Adipose-derived stem cells (ASCs) play an important role in bone regeneration. Our previous study confirmed that ASCs from DOP mice (DOP-ASCs) have a lower osteogenesis potential compared with control ASCs (CON-ASCs).
View Article and Find Full Text PDFsiRNA is found to effectively knock down the target gene in cells, which is considered a promising strategy for gene therapy. However, the application of siRNA is limited due to its low efficiency of the cellular uptake. Tetrahedral framework nucleic acids (tFNAs) are synthesized by four single-stranded DNAs and show multiple biological functions in recent studies, especially suitable for drug delivery.
View Article and Find Full Text PDFACS Appl Mater Interfaces
December 2020
Osteoarthritis (OA) is a degenerative articular cartilage pathogenic process that is accompanied by excessive chondrocyte apoptosis. The occurrence of chondrocyte death and OA is related to decreased autophagy. Tetrahedral framework nucleic acid (TFNA), a potent bioactive DNA nanomaterial, exerts antiapoptotic and antioxidative effects in various diseases, resulting in autophagy promotion and inhibition of the Wnt/β-catenin-signaling pathway.
View Article and Find Full Text PDFSignal Transduct Target Ther
July 2020
While the skin is considered the first line of defense in the human body, there are some vulnerabilities that render it susceptible to certain threats, which is an issue that is recognized by both patients and doctors. Cutaneous wound healing is a series of complex processes that involve many types of cells, such as fibroblasts and keratinocytes. This study showed that tetrahedral framework nucleic acids (tFNAs), a type of self-assembled nucleic-acid material, have the ability to promote keratinocyte(HaCaT cell line) and fibroblast(HSF cell line) proliferation and migration in vitro.
View Article and Find Full Text PDF