Genomic imprinting refers to allele-specific expression of genes depending on parental origin, and it is regulated by epigenetic modifications. Intraspecific allelic variation for imprinting has been detected; however, the intraspecific genome-wide allelic epigenetic variation in maize and its correlation with imprinting variants remain unclear. Here, three reciprocal hybrids were generated by crossing Zea mays inbred lines CAU5, B73, and Mo17 in order to examine the intraspecific conservation of the imprinted genes in the kernel.
View Article and Find Full Text PDFCommon smut caused by is one of the dominant fungal diseases in plants. The resistance mechanism to infection involving alterations in the cell wall is poorly studied. In this study, the resistant single segment substitution line (SSSL) R445 and its susceptible recurrent parent line Ye478 of maize were infected with , and the changes in cell wall components and structure were studied at 0, 2, 4, 8, and 12 days postinfection.
View Article and Find Full Text PDFBackground: Genomic imprinting refers to a subset of genes that are expressed from only one parental allele during seed development in plants. Studies on genomic imprinting have revealed that intraspecific variations in genomic imprinting expression exist in naturally genetic varieties. However, there have been few studies on the functional analysis of allele-specific imprinted genes.
View Article and Find Full Text PDFThe developmental plasticity of the maize inflorescence depends on meristems, which directly affect reproductive potential and yield. However, the molecular roles of upper floral meristem (UFM) and lower floral meristem (LFM) in inflorescence and kernel development have not been fully elucidated. In this study, we characterized the () novel mutant, which contains kernels with giant embryos but shows normal vegetative growth like the wild type (WT).
View Article and Find Full Text PDFHeterosis or hybrid vigor refers to the superior phenotypic traits of hybrids relative to their parental inbred lines. An imbalance between the expression levels of two parental alleles in the F1 hybrid has been suggested as a mechanism of heterosis. Here, based on genome-wide allele-specific expression analysis using RNA sequencing technology, 1689 genes exhibiting genotype-dependent allele-specific expression (genotype-dependent ASEGs) were identified in the embryos, and 1390 genotype-dependent ASEGs in the endosperm, of three maize F1 hybrids.
View Article and Find Full Text PDFGenomic imprinting is a classic epigenetic phenomenon related to the uniparental expression of genes. Imprinting variability exists in seeds and can contribute to observed parent-of-origin effects on seed development. Here, we conducted allelic expression of the embryo and endosperm from four crosses at 11 days after pollination (DAP).
View Article and Find Full Text PDFBackground: Porous metal augments are used in complex hip arthroplasty; however, few studies have assessed their efficacy and safety. This systematic review analyzed the use of augments in revision hip arthroplasty and summarized the clinical research findings.
Methods: We used combinations of "revision," "replacement," "arthroplasty," "augment," "acetabular," and "hip" to search PubMed, Web of Science, EMBASE, Cochrane Library databases, and clinical trial registration platform "Clinicaltrials" for relevant literature.
Background: Three-dimensional (3D) printing technology has been widely used in orthopedics; however, it is still limited to the change of macroscopic structures. In order to further improve the biological properties of 3D-printed porous titanium scaffolds, this study introduced micro-arc oxidation (MAO) technology to modify the surface of porous titanium scaffolds and construct bioactive coatings on the surface of porous titanium scaffolds to improve the biocompatibility and osseointegration ability of the material.
Methods: For experiments, human bone marrow stem cells (hBMSCs) were seeded onto untreated scaffolds (control group) and MAO-treated scaffolds (experimental group).
Maize () doubled haploid (DH) breeding is a technology that can efficiently generate inbred lines with homozygous genetic backgrounds. Haploids are usually produced through induction by haploid inducer lines in maize. Currently, two approaches are usually used to develop maize haploid inducer lines.
View Article and Find Full Text PDFFront Physiol
February 2022
Despite recent evidence suggesting that nerve transfer techniques help improve clinical outcomes, the underlying manner by which collateral-regenerated nerve enters skeletal muscles to restore an organized pattern of the neuromuscular junction (NMJ) is unclear. To construct the animal models of collateral regeneration, the proximal peroneal nerve was fixed to the distal tibial nerve stump. Three months after surgery, the spatial distribution of motor endplates (MEPs) and corresponding in-muscle nerve branches in long flexor digitorum muscles were observed with tissue optical clearing combined with light-sheet microscopy in transgenic fluorescent mice.
View Article and Find Full Text PDFMaize is a heterosis-utilizing crop species, and the application of maize hybrids has significantly improved total maize yields worldwide. Breeding pure lines is the most important part of heterosis utilization. The double haploid (DH) breeding technology is the approach rising recently in breeding pure lines; compared to the conventional recurrent-selfing method, it can significantly accelerate the crop breeding process.
View Article and Find Full Text PDFAcetochlor is always used in maize (Zea mays L.) fields as a common pre-emergence herbicide. In this field study, we investigated the effects of acetochlor on the photosynthetic characteristics, chlorophyll fluorescence parameters, and antioxidant enzyme activities in acetochlor-resistant (BWC95) and acetochlor-sensitive (BWC12) near-isogenic lines.
View Article and Find Full Text PDFMaize () is a monoecious plant, in which inflorescence morphogenesis involves complicated molecular regulatory mechanisms. Although many related genes have been cloned, our understanding of the molecular mechanism underlying maize inflorescence development remains limited. Here, we identified a maize semi-dominant mutant (), which displays pleiotropic defects during inflorescence development, including loss of determinacy and identity in meristems and floral organs, as well as the sexual transformation of tassel florets.
View Article and Find Full Text PDFGene imprinting is a widely observed epigenetic phenomenon in maize endosperm; however, whether it also occurs in the maize embryo remains controversial. Here, we used high-throughput RNA sequencing on laser capture microdissected and manually dissected maize embryos from reciprocal crosses between inbred lines B73 and Mo17 at six time points (3-13 days after pollination, DAP) to analyze allelic gene expression patterns. Co-expression analysis revealed sequential gene activation during maize embryo development.
View Article and Find Full Text PDFProduction of maternal haploids using a conspecific haploid inducer is routine and highly efficient in maize. However, the underlying mechanism of haploid induction (HI) is unclear. We develop a method to isolate three nuclei from a pollen grain and four microspores from a tetrad for whole-genome sequencing.
View Article and Find Full Text PDFWhole-genome shotgun reads were analyzed to determine the repeat sequence composition in the genome of black mustard, Brassica nigra (L.) Koch. The analysis showed that satellite DNA sequences are very abundant in the black mustard genome.
View Article and Find Full Text PDF