Publications by authors named "Dexiang Sun"

As modern communication and detection technologies advance at a swift pace, multifunctional electromagnetic interference (EMI) shielding materials with active/positive infrared stealth, hydrophobicity, and electric-thermal conversion ability have received extensive attention. Meeting the aforesaid requirements simultaneously remains a huge challenge. In this research, the melamine foam (MF)/polypyrrole (PPy) nanowire arrays (MF@PPy) were fabricated via one-step electrochemical polymerization.

View Article and Find Full Text PDF

Background: Pediatric alopecia is increasingly common, influenced by conditions like alopecia areata and infections such as tinea capitis, primarily caused by Microsporum canis. Diagnosing tinea capitis in primary care is challenging due to limited access to advanced tools, leading to treatment delays.

Objectives: This study evaluates the effectiveness of Wood's lamp for early diagnosis of tinea capitis and its role in distinguishing it from other pediatric alopecia types.

View Article and Find Full Text PDF

With the increasing popularity of elastomers in industry and daily life, their high performance and functionality have attracted widespread attention. However, it is a great challenge for them to possess both high mechanical properties and excellent healing and recovery capabilities due to the limitations of the preparation methods and the intrinsic microstructure of the elastomers. In this study, a strategy of ice-controlled interfacial stepwise cross-linking was proposed to prepare the waterborne polyurethane-based elastomers with ultrahigh-density hydrogen bonding interaction achieved by enhancing the utilization rate of phenol hydroxyl groups of tannic acid to the maximum extent.

View Article and Find Full Text PDF

Harmful algal blooms (HABs) have emerged as a critical global environmental and ecological concern. Timely and accurate monitoring of the prevalent bloom-forming genera is crucial for HAB management. Conventional microscope-based methods are time-consuming, labor-intensive, and specialized expertise-dependent, often making them impractical for large-scale surveillance.

View Article and Find Full Text PDF

Heavy metal contamination negatively affects plants and animals in water as well as soils. Some microalgae can remove heavy metal contaminants from wastewater. The aim of this study was to screen green microalgae (GM) to identify those that tolerate high concentrations of toxic heavy metals in water as possible candidates for phytoremediation.

View Article and Find Full Text PDF

The massive accumulation of plastic waste has caused a serious negative impact on the human living environment. Replacing traditional petroleum-based polymers with biobased and biodegradable poly(l-lactic acid) (PLLA) is considered an effective way to solve this problem. However, it is still a great challenge to manufacture PLLA-based composites with high thermal conductivity and excellent mechanical properties via tailoring the microstructures of the blend composites.

View Article and Find Full Text PDF

The gene encoding a putative () from tolerant saline-alkali (TSA) , , was identified from a yeast cDNA library constructed from TSA after a NaCl treatment. expressed in yeast enhanced its tolerance to NaCl and sorbitol. The ChPAP protein from a GFP-tagged construct localized to the plasma membrane and the lumen of vacuoles.

View Article and Find Full Text PDF

Highly efficient oil/water separation ability is a prerequisite for the actual application of the membranes in oily sewage treatment, which is closely related to the surface feature and the porous structure of the membranes. In this work, the electrospun poly(vinylidene fluoride) (PVDF) porous fibers were firstly fabricated through blend-electrospinning with poly(vinyl pyrrolidone) (PVP) and then treating in distilled water. The results showed that the fibers exhibited the sponge-like porous structure, and a few PVP was reserved in the fibers due to the relatively good interaction between PVDF and PVP.

View Article and Find Full Text PDF

To evaluate the physiological responses of wheat to zinc (Zn) fertilizer application under drought stress, pot, and field experiments were conducted on wheat plants grown under different soil moistures and treated with soil and foliar Zn applications. Photosynthetic characteristics, antioxidant content, Zn element concentration, and the transcription level of genes involved in antioxidant biosynthesis were analyzed. Zn application increased SPAD and of wheat flag leaves, while decreased lipid peroxidation levels and HO content.

View Article and Find Full Text PDF

Background: Understanding the variance of antioxidant in wheat grain responses to irrigation and nitrogen (N) fertiliser management will improve the nutrient quality of wheat grain. Four N rates (0, 180, 240, and 300 kg ha(-1)) combined with irrigation times (I0, no irrigation; I1, jointing time irrigation; I2, jointing + flowering time irrigation), were used to determine the effect of N fertilisation and irrigation on total phenolic content (TPC), phenolic acid composition, and antioxidant activity (AOA) of wheat grain.

Results: Irrigation, N fertilisation and their interactions had significant effect on TPC, total flavonoid content (TFC), AOA, p-coumaric acid (PCA), as well as vanillic acid (VA) and chlorogenic acid (CA).

View Article and Find Full Text PDF

Flavonoids are the low molecular weight polyphenolic secondary metabolic compounds, and have various functions in growth, development, reproduction, and stress defense. However, little is known about the roles of the key enzymes in the flavonoids biosynthesis pathway in response to drought stress in winter wheat. Here, we investigated the expression pattern of flavonoids biosynthesis genes and accumulation of flavonoids in wheat leaves under drought stress.

View Article and Find Full Text PDF