Publications by authors named "Dexiang Liu"

Background: Cognitive impairment is a common and feared characteristic of aging processes, and one key mechanism of cognition is hippocampal synaptic structure. Previous studies have reported that gut microbiota dysbiosis occurred in neurodegenerative diseases and other brain disorders with cognitive impairment. However, it is not clear how gender differences affect cognitive impairment in aging processes and whether they affect synaptic structure and gut microbiota.

View Article and Find Full Text PDF

Post-traumatic stress disorder (PTSD) is a severe mental illness that could impose heavy burdens on individuals and society, but effective and precise treatment modalities are unknown. The level of hydrogen sulfide (HS) in the brain plays an important role in psychiatric diseases. However, it is still unclear whether PTSD exposure could affect the level of HS and whether there is a correlation between HS levels and the pathogenesis of PTSD.

View Article and Find Full Text PDF
Article Synopsis
  • Mesenchymal stromal cells (MSCs) are being investigated for their potential to treat neurological diseases through their extracellular vesicles (EVs), particularly in conditions of hypoxia-ischemia (HI) brain damage.
  • In this study, modified EVs from MSCs preconditioned with NaHS reduced oxidative stress and improved mitochondrial function in HI mice when delivered intranasally, compared to regular EVs.
  • The mechanism involved the upregulation of the Nrf2 protein, which was loaded into EVs, leading to enhanced delivery of this antioxidant to neurons, and the research shows that knocking down Nrf2 in MSCs weakened the therapeutic effects of HS-EVs.
View Article and Find Full Text PDF

Ischemic stroke is a devastating disease and one of the leading causes of mortality worldwide. Overproduction of reactive oxygen species and inflammatory response contribute to secondary damage following ischemic insult. Nanozymes with robust anti-oxidative stress properties possess therapeutic possibility for ischemic insult.

View Article and Find Full Text PDF

Ischemic stroke is a common cause of mortality and severe disability in human and currently lacks effective treatment. Neuronal activation and neuroinflammation are the major two causes of neuronal damage. However, little is known about the connection of these two phenomena.

View Article and Find Full Text PDF

JOURNAL/nrgr/04.03/01300535-202506000-00028/figure1/v/2024-08-05T133530Z/r/image-tiff The pathophysiology of Huntington's disease involves high levels of the neurotoxin quinolinic acid. Quinolinic acid accumulation results in oxidative stress, which leads to neurotoxicity.

View Article and Find Full Text PDF

Early life stress (ELS) increases the risk of depression later in life. Programmed cell death factor 4 (PDCD4), an apoptosis-related molecule, extensively participates in tumorigenesis and inflammatory diseases. However, its involvement in a person's susceptibility to ELS-related depression is unknown.

View Article and Find Full Text PDF

Early life events are major risk factors for the onset of depression and have long-term effects on the neurobiological changes and behavioral development of rodents. However, little is known about the specific mechanisms of early life adversity in the susceptibility to subsequent stress exposure in adolescence. This study characterized the effect of maternal separation (MS), an animal model of early life adversity, on the behavioral responses to restraint stress in mice during adolescence and investigated the molecular mechanism underlying behavioral vulnerability to chronic stress induced by MS.

View Article and Find Full Text PDF

Oxidative stress is a major obstacle for neurological functional recovery after hypoxia-ischemia (HI) brain damage. Nanozymes with robust anti-oxidative stress properties offer a therapeutic option for HI injury. However, insufficiency of nanozyme accumulation in the HI brain by noninvasive administration hinders their application.

View Article and Find Full Text PDF

We previously showed that hydrogen sulfide (HS) has a neuroprotective effect in the context of hypoxic ischemic brain injury in neonatal mice. However, the precise mechanism underlying the role of HS in this situation remains unclear. In this study, we used a neonatal mouse model of hypoxic ischemic brain injury and a lipopolysaccharide-stimulated BV2 cell model and found that treatment with L-cysteine, a HS precursor, attenuated the cerebral infarction and cerebral atrophy induced by hypoxia and ischemia and increased the expression of miR-9-5p and cystathionine β synthase (a major HS synthetase in the brain) in the prefrontal cortex.

View Article and Find Full Text PDF

Exosomes play crucial roles in local and distant cellular communication and are involved in various physiological and pathological processes. Tumour-derived exosomes are pivotal to tumorigenesis, but the precise mechanisms underlying their secretion remain elusive. In particular, the SNARE proteins that mediate the fusion of multivesicular bodies (MVBs) with the plasma membrane (PM) in tumour cells are subject to debate.

View Article and Find Full Text PDF

Background: Inverse Compton scattering (ICS) source can produce quasi-monoenergetic micro-focus X-rays ranging from keV to MeV level, with potential applications in the field of high-resolution computed tomography (CT) imaging. ICS source has an energy-angle correlated feature that lower photon energy is obtained at larger emission angle, thus different photon energies are inherently contained in each ICS pulse, which is especially advantageous for dual- or multi-energy CT imaging.

Objective: This study proposes a dual-energy micro-focus CT scheme based on the energy-angle correlation of ICS source and tests its function using numerical simulations.

View Article and Find Full Text PDF
Article Synopsis
  • CYLD, a protein that removes ubiquitin from other proteins, is linked to anxiety and depression, particularly in certain brain regions.
  • Research on CYLD-knockout mice showed that those without CYLD had unexpected reactions to acute stress, indicating a potential role in stress adaptation.
  • Significant neuronal activation was observed in regions like the medial prefrontal cortex and nucleus accumbens during stress, suggesting CYLD's involvement in anxiety-related behavior across multiple brain areas.
View Article and Find Full Text PDF

We previously found that osteopontin (OPN) played a role in hypoxia-ischemia (HI) brain damage. However, its underlying mechanism is still unknown. Bioinformatics analysis revealed that the OPN protein was linked to the lysosomal cathepsin B (CTSB) and galectin-3 (GAL-3) proteins after HI exposure.

View Article and Find Full Text PDF

Introduction: Neuroinflammation plays an important role in the development of major depressive disorder (MDD). Osteopontin (OPN) is one of the key molecules involved in neuroinflammation. We demonstrate here for the first time a key role of OPN in lipopolysaccharide (LPS)-induced depressive-like behavioral syndrome.

View Article and Find Full Text PDF

Background: Chronic unpredictable mild stress (CUMS) can induce depressive behaviours and alter the composition of the gut microbiome. Although modulating gut microbiota can improve depression-like behaviour in rats, the mechanism of action is unclear. Additionally, gut microbiota can affect brain function through the neuroendocrine pathway.

View Article and Find Full Text PDF

Rationale And Objective: Post-traumatic stress disorder (PTSD) is a prevalent and debilitating psychiatric disorder. However, its specific etiological mechanism remains unclear. Previous studies have shown that traumatic stress changes metabotropic glutamate receptor 5 (mGluR5) expression in the hippocampus (HIP) and prefrontal cortex (PFC).

View Article and Find Full Text PDF

Early life stress alters brain-derived neurotrophic factor (BDNF) promoter IV methylation and BDNF expression, which is closely related to the pathophysiological process of depression. However, the role of abnormal methylation of BDNF induced by stress during adolescence due to depression has not yet been clarified. In this study, adolescent mice were exposed to chronic unpredictable mild stress (CUMS).

View Article and Find Full Text PDF

Extracellular vesicles (EVs) from mesenchymal stromal cells (MSCs) have previously been shown to protect against brain injury caused by hypoxia-ischemia (HI). The neuroprotective effects have been found to relate to the anti-inflammatory effects of EVs. However, the underlying mechanisms have not previously been determined.

View Article and Find Full Text PDF

We previously show that L-Cysteine administration significantly suppresses hypoxia-ischemia (HI)-induced neuroinflammation in neonatal mice through releasing HS. In this study we conducted proteomics analysis to explore the potential biomarkers or molecular therapeutic targets associated with anti-inflammatory effect of L-Cysteine in neonatal mice following HI insult. HI brain injury was induced in postnatal day 7 (P7) neonatal mice.

View Article and Find Full Text PDF

Background: Chronic unpredictable mild stress (CUMS) can not only lead to depression-like behavior but also change the composition of the gut microbiome. Regulating the gut microbiome can have an antidepressant effect, but the mechanism by which it improves depressive symptoms is not clear. Short-chain fatty acids (SCFAs) are small molecular compounds produced by the fermentation of non-digestible carbohydrates.

View Article and Find Full Text PDF

Early detrimental experiences increase the risk of psychiatric disorders, including posttraumatic stress disorder (PTSD). In a previous experiment, we demonstrated that traumatic stress in adolescence triggers changes in the expression of the epigenetic marker H3K9me2 in the hippocampus and prefrontal cortex of adolescent and adult rats, which suppresses transcription of the brain-derived neurotrophic factor (Bdnf) gene that promotes dendrite development and synaptic growth. However, corresponding changes in the amygdala in response to traumatic stress in early life have not yet been fully elucidated.

View Article and Find Full Text PDF

COVID-19 has been proven to harm adolescents' mental health, and several psychological influence factors have been proposed. However, the importance of these factors in the development of mood disorders in adolescents during the pandemic still eludes researchers, and practical strategies for mental health education are limited. We constructed a sample of 1,771 adolescents from three junior high middle schools, three senior high middle schools, and three independent universities in Shandong province, China.

View Article and Find Full Text PDF

Background: Early life stress (ELS) induces a depressive-like phenotype and increases the risk of depression. Brain-derived neurotrophic factor (BDNF) has been confirmed to be involved in the pathophysiology of depression. However, the mechanism by which ELS alters the epigenetic regulation of BDNF and changes susceptibility to depression has not been fully clarified.

View Article and Find Full Text PDF