Publications by authors named "Dexiang Ban"

Spinal cord injury (SCI) is a refractory disease of the central nervous system with a high disability and incidence rate. In recent years, bioactive material combined with cell transplantation has been considered an effective method for the treatment of SCI. The present study encapsulated activated Schwann cells (ASCs) in a 3D gelatin methacryloyl (GelMA) hydrogel in order to investigate its therapeutic effects on SCI.

View Article and Find Full Text PDF

Context: Chronic neuropathic pain (NP) frequently occurs after spinal cord injury (SCI) but lacks effective therapeutic options in the clinic. Numerous evidence indicates the involvement of macrophages activation in the NP, and the modulation of macrophages is promising for NP treatment. In this study, we introduce Cerium oxide nanoparticles (CONPs) and aim to investigate whether it can relieve the NP by modulating macrophage polarization.

View Article and Find Full Text PDF

Spinal cord injury (SCI) is a neurological disease having devastating effect and results in the development of systemic inflammation. However, the molecular mechanisms of SCI remain not entirely elucidated. This study was directed toward exploring the circ Hecw1 involved in the mechanism of lipopolysaccharide (LPS)-triggered inflammation damage in neuronal cells.

View Article and Find Full Text PDF

Non-canonical signaling pathways have been proved to act as potent sites of astrocytes osmotic expanding or proliferation, which promotes the regeneration of axons in areas with non-neural spinal cord injury (SCI). However, the relevant signal pathway that induces autophagic cell death in astrocytes and its function relative to the TNF-like weak inducer of apoptosis/nuclear factor κB (TWEAK/NF-κB) axis remains elusive. The SCI model was established by vertically striking the spinal cord according to Allen's model.

View Article and Find Full Text PDF

Background/aims: Low back pain has become one of the most common musculoskeletal diseases in the world. Studies have shown that intervertebral disc degeneration (IDD) is an important factor leading to low back pain, but the mechanisms underlying IDD remain largely unknown. Research over the past decade has suggested critical roles for microRNAs (miRNAs) in natural growth and disease progression.

View Article and Find Full Text PDF

The incidence of spinal cord injury (SCI) has been gradually increasing, and the treatment has troubled the medical field all the time. Primary and secondary injuries ultimately lead to nerve impulse conduction block. Microglia and astrocytes excessively accumulate and proliferate to form the glial scar.

View Article and Find Full Text PDF

Aims: We conducted a meta-analysis of eligible studies to compare the surgical outcomes between diabetic patients and non-diabetic patients who have undergone cervical spondylotic myelopathy (CSM).

Methods: A systematic literature search of PubMed, Embase, and Web of Science (up to February 10, 2016) was conducted. Eligible studies were case-control or cohort studies that compared the outcomes of cervical surgery between diabetic patients and non-diabetic patients.

View Article and Find Full Text PDF

Glial scar formation is one of the major consequences of spinal cord injury, which prevents the regenerated axons passing the injured area and forming effective synaptic connection. In this paper, we used photodynamic therapy (PDT), which was mediated by the upconversion nanoparticles coated with polyethylene glycol (PEG) and photosensitizer (UCNPs-PEGM540), to reduce the glial scar formation after spinal cord injury. The in vitro experimental results indicated that cultured astrocytes could be killed by using upconversion nanoparticles after excitation with near infrared light.

View Article and Find Full Text PDF
Article Synopsis
  • ACDF is a common spine surgery performed in outpatient settings, focusing on less invasive techniques and improved pain management, yet complications can still pose serious risks.
  • A systematic review analyzed data from multiple databases, resulting in 12 articles that compared the safety of outpatient versus inpatient cervical spine surgeries.
  • The study found no deaths and similar complication rates between both groups, with the most frequent issues being dysphagia and hematoma, suggesting outpatient surgery is as safe as inpatient surgery for adult patients.
View Article and Find Full Text PDF

Cyclosporine-A (CsA) is an immunosuppressant agent that has shown effectiveness as a neuroprotective drug; however, it does not readily cross the blood-spinal cord barrier (BSCB), which constrains the clinical applications of CsA for the treatment of spinal cord injury (SCI). Our group recently tested the ability of novel polyethylene glycol (PEG)-transactivating-transduction protein (TAT)-modified CsA-loaded cationic multifunctional polymeric liposome-poly(lactic-co-glycolic acid) (PLGA) core/shell nanoparticles (PLGA/CsA NPs) to transport and deliver CsA across the BSCB to treat SCI. The PLGA/CsA NPs were successfully constructed.

View Article and Find Full Text PDF

Schwann cells (SCs) are the main glial cells of the peripheral nervous system, which can promote neural regeneration. Grafting of autologous SCs is one of the well-established and commonly performed procedures for peripheral nerve repair. With the aim to improve the clinical condition of patients with spinal cord injury (SCI), a program of grafting autologous activated Schwann cells (AASCs), as well as a series of appropriate neurorehabilitation programs, was employed to achieve the best therapeutic effects.

View Article and Find Full Text PDF

Aim: We aim to explore the repair effect of combined cell therapy using activated Schwann cells (ASCs) and bone mesenchymal stem cells (BMSCs) in traumatic spinal cord injury (SCI) in rats.

Materials & Methods: ASCs and BMSCs were used for combined transplantation to treat acute SCI in rats, both of which can be obtained from SCI patients. ASCs were obtained by prior ligation of saphenous nerve and BMSCs by flush of the marrow cavity with Dulbecco's modified Eagle's medium solution.

View Article and Find Full Text PDF

The blood-spinal cord barrier (BSCB) prevents many macromolecular agents from passing through to reach sites of injury in the spinal cord. This study evaluated the ability of a novel multifunctional liposome modified with polyethylene glycol (PEG) and transactivating-transduction protein (TAT) containing an iron core to cross the BSCB using a rat model of spinal cord injury. Rats were examined daily for a period of three days after spinal cord injury and injection of either the multifunctional modified liposome or control formulations using a 3.

View Article and Find Full Text PDF

Objective: Transplantation of fetal spinal cord cells (FSCC) can promote regeneration of injured spinal cord, while Schwann cells (SC) and some growth factors have a similar effect. However, the synergistic effects and optimal combination of these modalities have not yet been evaluated. In the current study, the efficiency of cell therapy of FSCC and/or SC, with/without growth factors (nerve growth factor [NGF] and brain-derived neurotrophic factor [BDNF]) was examined, with the aim of establishing an optimized protocol for spinal cord injury.

View Article and Find Full Text PDF

Basic research in spinal cord injury (SCI) has made great strides in recent years, and some new insights and strategies have been applied in promoting effective axonal regrowth and sprouting. However, a relatively safe and efficient transplantation technique remains undetermined. This study, therefore, was aimed to address a question of how to graft Schwann cells to achieve the best possible therapeutic effects.

View Article and Find Full Text PDF