Publications by authors named "Dewi Sartika"

The aim of this study was to investigate the potential of Waru bark fiber (WBF) as a reinforcement material for composites. To achieve this aim, WBF was extracted using a conventional process, to ensure its purity, and then characterized for physical, mechanical, chemical, and thermal properties. Microstructure analysis was performed using Scanning Electron Microscope (SEM) to show uniform and exceptional fiber sheets with naturally woven fiber shapes.

View Article and Find Full Text PDF

Food loss and waste caused by oxidation result in environmental and economic losses and health threats. Lignin is an abundant aromatic polymer with varied antioxidant capacity, which can reduce food oxidation caused by radical species exposure. The lignin antioxidant strength can be influenced by source, type, structure, processing, degradation products, chemical modifications, and particle size.

View Article and Find Full Text PDF

Pathogenic microbial contamination (bacteria and fungi) in food products during production poses a significant global health risk, leading to food waste, greenhouse gas emissions, and aesthetic and financial losses. Bacteria and fungi, by forming solid biofilms, enhance their resistance to antimicrobial agents, thereby increasing the potential for cross-contamination of food products. Curcumin molecule-mediated photodynamic inactivation (Cur-m-PDI) technology has shown promising results in sterilizing microbial contaminants and their biofilms, significantly contributing to food preservation without compromising quality.

View Article and Find Full Text PDF

Wounds are skin tissue damage due to trauma. Many factors inhibit the wound healing phase (hemostasis, inflammation, proliferation, and alteration), such as oxygenation, contamination/infection, age, effects of injury, sex hormones, stress, diabetes, obesity, drugs, alcoholism, smoking, nutrition, hemostasis, debridement, and closing time. Cellulose is the most abundant biopolymer in nature which is promising as the main matrix of wound dressings because of its good structure and mechanical stability, moisturizes the area around the wound, absorbs excess exudate, can form elastic gels with the characteristics of bio-responsiveness, biocompatibility, low toxicity, biodegradability, and structural similarity with the extracellular matrix (ECM).

View Article and Find Full Text PDF

Agricultural biomass waste such as corn cob is available in large quantities and can be used as renewable materials for various applications. Corn cob was converted into nanocrystalline cellulose by using mild sulfuric acid concentrations (30 % w/v) at low temperature (50 °C) and a relatively shorter time extraction (30 min) combined with mechanical treatment using a conventional high-speed blender. NCC from cellulose and α-cellulose from corn cobs have been successfully isolated with relatively high yields and crystallinities of 50.

View Article and Find Full Text PDF

Introduction: The burden of metabolic (dysfunction) associated fatty liver disease (MAFLD) is rising mirrored by an increase in hepatocellular cancer (HCC). MAFLD and its sequelae are characterized by perturbations in lipid handling, inflammation, and mitochondrial damage. The profile of circulating lipid and small molecule metabolites with the development of HCC is poorly characterized in MAFLD and could be used in future studies as a biomarker for HCC.

View Article and Find Full Text PDF

The COVID-19 pandemics caused an unprecedented mortality, distress, and globally poses a challenge to mental resilience. To our knowledge, this is the first study that aimed to investigate the psychological distress among the adult general population across 13 countries. This cross-sectional study was conducted through online survey by recruiting 7091 respondents.

View Article and Find Full Text PDF

Recently, stem cell-based bone tissue engineering (BTE) has been recognized as a preferable and clinically significant strategy for bone repair. In this study, a pure 3D silk fibroin (SF) scaffold was fabricated as a BTE material using a lyophilization method. We aimed to investigate the efficacy of the SF scaffold with and without seeded human adipose-derived mesenchymal stem cells (hASCs) in facilitating bone regeneration.

View Article and Find Full Text PDF

The existence of red, inflammatory, and chronic itchy condition in the skin is commonly speculated as the presence of Atopic Dermatitis (AD) in patients. The use of silk clothing as a non-pharmacological approach in the management of AD has been noticed as an effective alternative therapy; however, the evidence based on its usage is poorly served. Hence, we aim to evaluate the effectiveness of using pure silk clothing in the therapy of AD patients.

View Article and Find Full Text PDF

Bacterial infection has long been recognized to contribute to struvite urinary stone deposition; however, its contribution to the development of chronic kidney stones has not been extensively investigated. In the present study, we hypothesized another possible method of bacteria contributing to the formation of calcium oxalate (CaOx) that accounts for the biggest part of the kidney stone. Bacteria may play important roles by influencing renal Ca-related ion channel activities, resulting in chronic inflammation of the kidney along with rapid aggregation of stones.

View Article and Find Full Text PDF

This article presents an inexpensive method to fabricate gelatin, as a natural polymer, into monofilament fibers or other appropriate forms. Through the wet spinning method, gelatin fibers are produced by smooth extrusion in a suitable coagulation medium. To increase the functional surface of these gelatin fibers and their ability to mimic the features of tissues, gelatin can be molded into a tube form by referring to this concept.

View Article and Find Full Text PDF