Proc SPIE Int Soc Opt Eng
February 2024
Organ segmentation is a fundamental requirement in medical image analysis. Many methods have been proposed over the past 6 decades for segmentation. A unique feature of medical images is the anatomical information hidden within the image itself.
View Article and Find Full Text PDFPurpose: Analysis of the abnormal motion of thoraco-abdominal organs in respiratory disorders such as the Thoracic Insufficiency Syndrome (TIS) and scoliosis such as adolescent idiopathic scoliosis (AIS) or early onset scoliosis (EOS) can lead to better surgical plans. We can use healthy subjects to find out the normal architecture and motion of a rib cage and associated organs and attempt to modify the patient's deformed anatomy to match to it. Dynamic magnetic resonance imaging (dMRI) is a practical and preferred imaging modality for capturing dynamic images of healthy pediatric subjects.
View Article and Find Full Text PDFProc SPIE Int Soc Opt Eng
February 2023
Recently, deep learning networks have achieved considerable success in segmenting organs in medical images. Several methods have used volumetric information with deep networks to achieve segmentation accuracy. However, these networks suffer from interference, risk of overfitting, and low accuracy as a result of artifacts, in the case of very challenging objects like the brachial plexuses.
View Article and Find Full Text PDFProc SPIE Int Soc Opt Eng
April 2022
Proc SPIE Int Soc Opt Eng
February 2023
Quantitative analysis of the dynamic properties of thoraco-abdominal organs such as lungs during respiration could lead to more accurate surgical planning for disorders such as Thoracic Insufficiency Syndrome (TIS). This analysis can be done from semi-automatic delineations of the aforesaid organs in scans of the thoraco-abdominal body region. Dynamic magnetic resonance imaging (dMRI) is a practical and preferred imaging modality for this application, although automatic segmentation of the organs in these images is very challenging.
View Article and Find Full Text PDFPurpose: Tissue radiotracer activity measured from positron emission tomography (PET) images is an important biomarker that is clinically utilized for diagnosis, staging, prognostication, and treatment response assessment in patients with cancer and other clinical disorders. Using PET image values to define a normal range of metabolic activity for quantification purposes is challenging due to variations in patient-related factors and technical factors. Although the formulation of standardized uptake value (SUV) has compensated for some of these variabilities, significant non-standardness still persists.
View Article and Find Full Text PDFPurpose: Tissue radiotracer activity measured from positron emission tomography (PET) images is an important biomarker that is clinically utilized for diagnosis, staging, prognostication, and treatment response assessment in patients with cancer and other clinical disorders. Using PET image values to define a normal range of metabolic activity for quantification purposes is challenging due to variations in patient-related factors and technical factors. Although the formulation of standardized uptake value (SUV) has compensated for some of these variabilities, significant non-standardness still persists.
View Article and Find Full Text PDFBackground: Automatic segmentation of 3D objects in computed tomography (CT) is challenging. Current methods, based mainly on artificial intelligence (AI) and end-to-end deep learning (DL) networks, are weak in garnering high-level anatomic information, which leads to compromised efficiency and robustness. This can be overcome by incorporating natural intelligence (NI) into AI methods via computational models of human anatomic knowledge.
View Article and Find Full Text PDFPurpose: Despite advances in deep learning, robust medical image segmentation in the presence of artifacts, pathology, and other imaging shortcomings has remained a challenge. In this paper, we demonstrate that by synergistically marrying the unmatched strengths of high-level human knowledge (i.e.
View Article and Find Full Text PDFProc SPIE Int Soc Opt Eng
February 2021
Multi-atlas segmentation methods will benefit from atlases covering the complete spectrum of population patterns, while the difficulties in generating such large enough datasets and the computation burden required in the segmentation procedure reduce its practicality in clinical application. In this work, we start from a viewpoint that different parts of the target object can be recognized by different atlases and propose a precision atlas selection strategy. By comparing regional similarity between target image and atlases, precision atlases are ranked and selected by the frequency of regional best match, which have no need to be globally similar to the target subject at either image-level or object-level, largely increasing the implicit patterns contained in the atlas set.
View Article and Find Full Text PDFPurpose: In the multi-atlas segmentation (MAS) method, a large enough atlas set, which can cover the complete spectrum of the whole population pattern of the target object will benefit the segmentation quality. However, the difficulty in obtaining and generating such a large set of atlases and the computational burden required in the segmentation procedure make this approach impractical. In this paper, we propose a method called SOMA to select subject-, object-, and modality-adapted precision atlases for automatic anatomy recognition in medical images with pathology, following the idea that different regions of the target object in a novel image can be recognized by different atlases with regionally best similarity, so that effective atlases have no need to be globally similar to the target subject and also have no need to be overall similar to the target object.
View Article and Find Full Text PDFPurpose: The derivation of quantitative information from medical images in a practical manner is essential for quantitative radiology (QR) to become a clinical reality, but still faces a major hurdle because of image segmentation challenges. With the goal of performing disease quantification in lymph node (LN) stations without explicit nodal delineation, this paper presents a novel approach for disease quantification (DQ) by automatic recognition of LN zones and detection of malignant lymph nodes within thoracic LN zones via positron emission tomography/computed tomography (PET/CT) images. Named AAR-LN-DQ, this approach decouples DQ methods from explicit nodal segmentation via an LN recognition strategy involving a novel globular filter and a deep neural network called SegNet.
View Article and Find Full Text PDFContouring (segmentation) of Organs at Risk (OARs) in medical images is required for accurate radiation therapy (RT) planning. In current clinical practice, OAR contouring is performed with low levels of automation. Although several approaches have been proposed in the literature for improving automation, it is difficult to gain an understanding of how well these methods would perform in a realistic clinical setting.
View Article and Find Full Text PDFPurpose: The derivation of quantitative information from images in a clinically practical way continues to face a major hurdle because of image segmentation challenges. This paper presents a novel approach, called automatic anatomy recognition-disease quantification (AAR-DQ), for disease quantification (DQ) on positron emission tomography/computed tomography (PET/CT) images. This approach explores how to decouple DQ methods from explicit dependence on object (e.
View Article and Find Full Text PDFProc SPIE Int Soc Opt Eng
February 2018
Segmentation of organs at risk (OARs) is a key step during the radiation therapy (RT) treatment planning process. Automatic anatomy recognition (AAR) is a recently developed body-wide multiple object segmentation approach, where segmentation is designed as two dichotomous steps: object recognition (or localization) and object delineation. Recognition is the high-level process of determining the whereabouts of an object, and delineation is the meticulous low-level process of precisely indicating the space occupied by an object.
View Article and Find Full Text PDFProc SPIE Int Soc Opt Eng
February 2018
Contouring of the organs at risk is a vital part of routine radiation therapy planning. For the head and neck (H&N) region, this is more challenging due to the complexity of anatomy, the presence of streak artifacts, and the variations of object appearance. In this paper, we describe the latest advances in our Automatic Anatomy Recognition (AAR) approach, which aims to automatically contour multiple objects in the head and neck region on planning CT images.
View Article and Find Full Text PDFProc SPIE Int Soc Opt Eng
February 2018
The recently developed body-wide Automatic Anatomy Recognition (AAR) methodology depends on fuzzy modeling of individual objects, hierarchically arranging objects, constructing an anatomy ensemble of these models, and a dichotomous object recognition-delineation process. The parent-to-offspring spatial relationship in the object hierarchy is crucial in the AAR method. We have found this relationship to be quite complex, and as such any improvement in capturing this relationship information in the anatomy model will improve the process of recognition itself.
View Article and Find Full Text PDFCurrently, there are many papers that have been published on the detection and segmentation of lymph nodes from medical images. However, it is still a challenging problem owing to low contrast with surrounding soft tissues and the variations of lymph node size and shape on computed tomography (CT) images. This is particularly very difficult on low-dose CT of PET/CT acquisitions.
View Article and Find Full Text PDFProc SPIE Int Soc Opt Eng
February 2017
Lung delineation via dynamic 4D thoracic magnetic resonance imaging (MRI) is necessary for quantitative image analysis for studying pediatric respiratory diseases such as thoracic insufficiency syndrome (TIS). This task is very challenging because of the often-extreme malformations of the thorax in TIS, lack of signal from bone and connective tissues resulting in inadequate image quality, abnormal thoracic dynamics, and the inability of the patients to cooperate with the protocol needed to get good quality images. We propose an interactive fuzzy connectedness approach as a potential practical solution to this difficult problem.
View Article and Find Full Text PDFMuch has been published on finding landmarks object surfaces in the context of shape modeling. While this is still an open problem, many of the challenges of past approaches can be overcome by removing the restriction that landmarks on the object surface. The we propose may reside inside, on the boundary of, or outside the object and are tethered to the object.
View Article and Find Full Text PDFPurpose: Overweight and underweight conditions are considered relative contraindications to lung transplantation due to their association with excess mortality. Yet, recent work suggests that body mass index (BMI) does not accurately reflect adipose tissue mass in adults with advanced lung diseases. Alternative and more accurate measures of adiposity are needed.
View Article and Find Full Text PDFPurpose: There are several disease conditions that lead to upper airway restrictive disorders. In the study of these conditions, it is important to take into account the dynamic nature of the upper airway. Currently, dynamic magnetic resonance imaging is the modality of choice for studying these diseases.
View Article and Find Full Text PDFPurpose: In an attempt to overcome several hurdles that exist in organ segmentation approaches, the authors previously described a general automatic anatomy recognition (AAR) methodology for segmenting all major organs in multiple body regions body-wide [J. K. Udupa et al.
View Article and Find Full Text PDFPurpose: Whole-body positron emission tomography/computed tomography (PET/CT) has become a standard method of imaging patients with various disease conditions, especially cancer. Body-wide accurate quantification of disease burden in PET/CT images is important for characterizing lesions, staging disease, prognosticating patient outcome, planning treatment, and evaluating disease response to therapeutic interventions. However, body-wide anatomy recognition in PET/CT is a critical first step for accurately and automatically quantifying disease body-wide, body-region-wise, and organwise.
View Article and Find Full Text PDFTo make Quantitative Radiology (QR) a reality in radiological practice, computerized body-wide Automatic Anatomy Recognition (AAR) becomes essential. With the goal of building a general AAR system that is not tied to any specific organ system, body region, or image modality, this paper presents an AAR methodology for localizing and delineating all major organs in different body regions based on fuzzy modeling ideas and a tight integration of fuzzy models with an Iterative Relative Fuzzy Connectedness (IRFC) delineation algorithm. The methodology consists of five main steps: (a) gathering image data for both building models and testing the AAR algorithms from patient image sets existing in our health system; (b) formulating precise definitions of each body region and organ and delineating them following these definitions; (c) building hierarchical fuzzy anatomy models of organs for each body region; (d) recognizing and locating organs in given images by employing the hierarchical models; and (e) delineating the organs following the hierarchy.
View Article and Find Full Text PDF