The development of phenotypic models of Parkinson's disease (PD) has enabled screening and identification of phenotypically active small molecules that restore complex biological pathways affected by PD toxicity. While these phenotypic screening platforms are powerful, they do not inherently enable direct identification of the cellular targets of promising lead compounds. To overcome this, chemoproteomic platforms like Thermal Proteome Profiling (TPP) and Stability of Proteins from Rates of Oxidation (SPROX) can be implemented to reveal protein targets of biologically active small molecules.
View Article and Find Full Text PDFChlamydia trachomatis, an obligate intracellular bacterium with limited metabolic capabilities, possesses the futalosine pathway for menaquinone biosynthesis. Futalosine pathway enzymes have promise as narrow-spectrum antibiotic targets, but the activity and essentiality of chlamydial menaquinone biosynthesis have yet to be established. In this work, menaquinone-7 (MK-7) was identified as a C.
View Article and Find Full Text PDFDisrupted cellular trafficking and transport processes are hallmarks of many neurodegenerative disorders (NDs). Recently, efforts have been made toward developing and implementing experimental platforms to identify small molecules that may help restore normative trafficking functions. There have been a number of successes in targeting endomembrane trafficking with the identification of compounds that restore cell viability through rescue of protein transport and trafficking.
View Article and Find Full Text PDFThe Nedd4 family contains several structurally related but functionally distinct HECT-type ubiquitin ligases. The members of the Nedd4 family are known to recognize substrates through their multiple WW domains, which recognize PY motifs (PPxY, LPxY) or phospho-threonine or phospho-serine residues. To better understand protein interactor recognition mechanisms across the Nedd4 family, we report the development and implementation of a python-based tool, PxYFinder, to identify PY motifs in the primary sequences of previously identified interactors of Nedd4 and related ligases.
View Article and Find Full Text PDFLasso peptides are a structurally diverse superfamily of conformationally constrained peptide natural products, of which a subset exhibits broad antimicrobial activity. Although advances in bioinformatics have increased our knowledge of strains harboring the biosynthetic machinery for lasso peptide production, relating peptide sequence to bioactivity remains a continuous challenge. To this end, genome mining investigation of Actinobacteria-produced antimicrobial lasso peptides was performed to correlate predicted structure with antibiotic activity.
View Article and Find Full Text PDFThe benzdiimidazole NAB2 rescues α-synuclein-associated trafficking defects associated with early onset Parkinson's disease in a Nedd4-dependent manner. Despite identification of E3 ubiquitin ligase Nedd4 as a putative target of NAB2, its molecular mechanism of action has not been elucidated. As such, the effect of NAB2 on Nedd4 activity and specificity was interrogated through biochemical, biophysical, and proteomic analyses.
View Article and Find Full Text PDFRamoplanins and enduracidins are peptidoglycan lipid intermediate II-binding lipodepsipeptides with broad-spectrum activity against methicillin- and vancomycin-resistant Gram-positive pathogens. Targeted genome mining using probes from conserved sequences within the ramoplanin/enduracidin biosynthetic gene clusters (BGCs) was used to identify six microorganisms with BGCs predicted to produce unique lipodepsipeptide congeners of ramoplanin and enduracidin. Fermentation of Micromonospora chersina yielded a novel lipoglycodepsipeptide, called chersinamycin, which exhibited good antibiotic activity against Gram-positive bacteria (1-2 μg/mL) similar to the ramoplanins and enduracidins.
View Article and Find Full Text PDFNedd4 is an E3 ubiquitin ligase that has received increased attention due to its role in the maintenance of proteostasis and in cellular stress responses. Investigation of Nedd4 enzymology has revealed a complex enzymatic mechanism that involves intermolecular interactions with upstream E2 conjugating enzymes and with substrates and intramolecular interactions that serve to regulate Nedd4 function. Thus, it is imperative that investigations of Nedd4 enzymology that employ recombinant enzyme be conducted with Nedd4 in its native, untagged form.
View Article and Find Full Text PDFCPAF (chlamydial protease-like activity factor) is a protease that is translocated into the host cytosol during infection. CPAF activity results in dampened host inflammation signaling, cytoskeletal remodeling, and suppressed neutrophil activation. Although CPAF is an emerging antivirulence target, its catalytic mechanism has been unexplored to date.
View Article and Find Full Text PDFWe present protease specificity profiling based on quantitative proteomics in combination with proteome-derived peptide libraries. Peptide libraries are generated by endoproteolytic digestion of proteomes without chemical modification of primary amines before exposure to a protease under investigation. After incubation with a test protease, treated and control libraries are differentially isotope-labeled using cost-effective reductive dimethylation.
View Article and Find Full Text PDFThe need for more effective anti-chlamydial therapeutics has sparked research efforts geared toward further understanding chlamydial pathogenesis mechanisms. Recent studies have implicated the secreted chlamydial serine protease, chlamydial protease-like activity factor (CPAF) as potentially important for chlamydial pathogenesis. By mechanisms that remain to be elucidated, CPAF is directed to a discrete group of substrates, which are subsequently cleaved or degraded.
View Article and Find Full Text PDFLysine-specific demethylase 1A (KDM1A/LSD1) is a FAD-dependent enzyme that catalyzes the oxidative demethylation of histone H3K4me1/2 and H3K9me1/2 repressing and activating transcription, respectively. Although the active site is expanded compared to that of members of the greater amine oxidase superfamily, it is too sterically restricted to encompass the minimal 21-mer peptide substrate footprint. The remainder of the substrate/product is therefore expected to extend along the surface of KDM1A.
View Article and Find Full Text PDFA target with therapeutic potential, lysine-specific demethylase 1A (KDM1A) is a regulator of gene expression whose tower domain is a protein-protein interaction motif. This domain facilitates the interaction of KDM1A with coregulators and multiprotein complexes that direct its activity to nucleosomes. We describe the design and characterization of a chimeric 'towerless' KDM1A, termed nΔ150 KDM1AΔTower KDM1B chimera (chKDM1AΔTower), which incorporates a region from the paralog lysine-specific demethylase 1B (KDM1B).
View Article and Find Full Text PDFFlavin-dependent, lysine-specific protein demethylases (KDM1s) are a subfamily of amine oxidases that catalyze the selective posttranslational oxidative demethylation of methyllysine side chains within protein and peptide substrates. KDM1s participate in the widespread epigenetic regulation of both normal and disease state transcriptional programs. Their activities are central to various cellular functions, such as hematopoietic and neuronal differentiation, cancer proliferation and metastasis, and viral lytic replication and establishment of latency.
View Article and Find Full Text PDFThe secreted Chlamydia protease CPAF cleaves a defined set of mammalian and Chlamydia proteins in vitro. As a result, this protease has been proposed to modulate a range of bacterial and host cellular functions. However, it has recently come into question the extent to which many of its identified substrates constitute bona fide targets of proteolysis in infected host cell rather than artifacts of postlysis degradation.
View Article and Find Full Text PDFConventional methods for synthesizing protein/peptide-polymer conjugates, as a means to improve the pharmacological properties of therapeutic biomolecules, typically have drawbacks including low yield, non-trivial separation of conjugates from reactants, and lack of site- specificity, which results in heterogeneous products with significantly compromised bioactivity. To address these limitations, the use of sortase A from Staphylococcus aureus is demonstrated to site-specifically attach an initiator solely at the C-terminus of green fluorescent protein (GFP), followed by in situ growth of a stealth polymer, poly(oligo(ethylene glycol) methyl ether methacrylate) by atom transfer radical polymerization (ATRP). Sortase-catalyzed initiator attachment proceeds with high specificity and near-complete (≈95%) product conversion.
View Article and Find Full Text PDFApplied in tandem, elastin-like polypeptides (ELPs) and the sortase A (SrtA) transpeptidase from provide a general method for chromatography-free purification of tag-free recombinant proteins and optional, site-specific and homogeneous conjugation of the protein to a small molecule. This system provides an efficient, practical mechanism for generating bioactive proteins and protein-small-molecule combination therapeutics at high yields and purities.
View Article and Find Full Text PDFLysine specific demethylase 1 (LSD1, also known as KDM1) is a histone modifying enzyme that regulates the expression of many genes important in cancer progression and proliferation. It is present in various transcriptional complexes including those containing the estrogen receptor (ER). Indeed, inhibition of LSD1 activity and or expression has been shown to attenuate estrogen signaling in breast cancer cells in vitro, implicating this protein in the pathogenesis of cancer.
View Article and Find Full Text PDFRamoplanin, a non-ribosomally synthesized peptide antibiotic, is highly effective against several drug-resistant Gram-positive bacteria, including vancomycin-resistant Enterococcus faecium (VRE) and methicillin-resistant Staphylococcus aureus (MRSA), two important opportunistic human pathogens. Recently, the biosynthetic cluster from the ramoplanin producer Actinoplanes ATCC 33076 was sequenced, revealing an unusual architecture of fatty acid and non-ribosomal peptide synthetase biosynthetic genes (NRPSs). The first steps towards understanding how these biosynthetic enzymes cooperatively interact to produce the depsipeptide product are expression and isolation of each enzyme to probe its specificity and function.
View Article and Find Full Text PDFDuring infection of epithelial cells, the obligate intracellular pathogen Chlamydia trachomatis secretes the serine protease Chlamydia protease-like activity factor (CPAF) into the host cytosol to regulate a range of host cellular processes through targeted proteolysis. Here we report the development of an in vitro assay for the enzyme and the discovery of a cell-permeable CPAF zymogen-based peptide inhibitor with nanomolar inhibitory affinity. Treating C.
View Article and Find Full Text PDFStaphylococcus aureus is a Gram-positive bacterial pathogen that causes serious infections which have become increasingly difficult to treat due to antimicrobial resistance and natural virulence strategies. Bacterial sortase enzymes are important virulence factors and good targets for future antibiotic development. It has recently been shown that sortase enzymes are integral to bacterial survival of phagocytosis, an underappreciated, but vital, step in S.
View Article and Find Full Text PDFThe obligate intracellular bacterial pathogen Chlamydia trachomatis injects numerous effector proteins into the epithelial cell cytoplasm to manipulate host functions important for bacterial survival. In addition, the bacterium secretes a serine protease, chlamydial protease-like activity factor (CPAF). Although several CPAF targets are reported, the significance of CPAF-mediated proteolysis is unclear due to the lack of specific CPAF inhibitors and the diversity of host targets.
View Article and Find Full Text PDF