Using DNA methylation profiles ( = 15,456) from 348 mammalian species, we constructed phyloepigenetic trees that bear marked similarities to traditional phylogenetic ones. Using unsupervised clustering across all samples, we identified 55 distinct cytosine modules, of which 30 are related to traits such as maximum life span, adult weight, age, sex, and human mortality risk. Maximum life span is associated with methylation levels in subclass homeobox genes and developmental processes and is potentially regulated by pluripotency transcription factors.
View Article and Find Full Text PDFEffective conservation and management of threatened wildlife populations require an accurate assessment of age structure to estimate demographic trends and population viability. Epigenetic aging models are promising developments because they estimate individual age with high accuracy, accurately predict age in related species, and do not require invasive sampling or intensive long-term studies. Using blood and biopsy samples from known age plains zebras (Equus quagga), we model epigenetic aging using two approaches: the epigenetic clock (EC) and the epigenetic pacemaker (EPM).
View Article and Find Full Text PDFHuman DNA methylation profiles have been used successfully to develop highly accurate biomarkers of aging ("epigenetic clocks"). Although these human epigenetic clocks are not immediately applicable to all species of the animal kingdom, the principles underpinning them appear to be conserved even in animals that are evolutionarily far removed from humans. This is exemplified by recent development of epigenetic clocks for mice and other mammalian species.
View Article and Find Full Text PDFCase Description: A free-ranging male bobcat () was evaluated because of signs of pelvic limb paralysis.
Clinical Findings: Physical examination of the anesthetized animal revealed tick infestation, normal mentation, and a lack of evidence of traumatic injuries. Radiography revealed no clinically relevant abnormalities.