Parkinson's disease (PD) is a neurodegenerative disease characterized by the progressive loss of dopaminergic neurons in the substantia nigra, the etiology of which remains unclear. Studies have shown that neuroinflammation and oxidative stress (OS) play an important role in neuronal damage in patients with PD. Disturbances in the gut microbiota influence neuroinflammation and OS through the microbiota-gut-brain axis.
View Article and Find Full Text PDFMastitis is a common mammalian disease occurring in the mammary tissue and poses a major threat to agriculture and the dairy industry. Hordenine (HOR), a phenylethylamine alkaloid naturally extracted from malt, has various pharmacological effects, but its role in mastitis is unknown. The aim of this study was to investigate the role of HOR and its underlying mechanism in a lipopolysaccharide (LPS)-induced inflammatory response model of mouse mammary epithelial cells (EpH4-Ev) and mouse mastitis model.
View Article and Find Full Text PDFBackground: Ulcerative colitis (UC) is a prolonged inflammatory disease of the gastrointestinal tract. Current therapeutic options remain limited, underscoring the imperative to explore novel therapeutic strategies. Narirutin (NR), a flavonoid naturally present in citrus fruits, exhibits excellent anti-inflammatory effects in vitro, yet its in vivo efficacy, especially in UC, remains underexplored.
View Article and Find Full Text PDFInflammatory bowel disease (IBD) refers to a cluster of intractable gastrointestinal disorders with an undetermined etiology and a lack of effective therapeutic agents. Amygdalin (Amy) is a glycoside extracted from the seeds of apricot and other plants and it exhibits a wide range of pharmacological properties. Here, the effects and mechanisms of Amy on colitis were examined via 16S rRNA sequencing, ELISA, transmission electron microscopy, Western blot, and immunofluorescence.
View Article and Find Full Text PDFParkinson's disease (PD), a neurodegenerative disease, is the leading cause of movement disorders. Neuroinflammation plays a critical role in PD pathogenesis. Neohesperidin (Neo), a natural flavonoid extracted from citric fruits exhibits anti-inflammatory effects.
View Article and Find Full Text PDFPatients with acute myocardial infarction complicated with diabetes are more likely to develop myocardial ischemia/reperfusion (I/R) injury (MI/RI) during reperfusion therapy. Both HMGB1 and RAGE play important roles in MI/RI. However, the specific mechanisms of HMGB1 associated with RAGE are not fully clarified in diabetic MI/RI.
View Article and Find Full Text PDFNeuronal apoptosis and neuroinflammation are key factors involved in the pathological changes of Parkinson's disease (PD). Sophoricoside (SOP) has shown anti-inflammatory and anti-apoptosis effects in various diseases. However, the role of SOP in PD has not been reported.
View Article and Find Full Text PDFParkinson's disease (PD) is a neurodegenerative disorder that occurs most frequently in middle-aged and elderly people. It is characterized by an insidious onset and a complex etiology, and no effective treatment has been developed. The primary characteristic of PD is the degenerative death of midbrain dopaminergic neurons.
View Article and Find Full Text PDFAccumulating research has indicated that inordinate activation of microglia releases inflammatory cytokines, damages neurons, and causes neuroinflammation, which eventually could lead to neurodegenerative diseases such as Parkinson's disease and Huntington's disease, etc. Notopterol (NOT) has anti-inflammatory and anti-oxidant functions in boundary tissues, but the effects of NOT on neuroinflammation have not been covered. Therefore, this study attempts to investigate the effect of NOT on neuroinflammation and the underlying mechanisms.
View Article and Find Full Text PDFBackground: Previous studies have shown a close association between an altered immune system and Parkinson's disease (PD). Neuroinflammation inhibition may be an effective measure to prevent PD. Recently, numerous reports have highlighted the potential of hydroxy-carboxylic acid receptor 2 (HCA2) in inflammation-related diseases.
View Article and Find Full Text PDFOur previous study showed that α-Cyperone inhibited the inflammatory response triggered by activated microglia and protected dopaminergic neuron in in vitro cell model of Parkinson's disease (PD). It is unclear the effect of α-Cyperone in animal models of PD. In this study, our results indicated that α-Cyperone ameliorated motor dysfunction, protected dopaminergic neurons, and inhibited the reduction of dopamine and its metabolites in lipopolysaccharide (LPS)-induced PD rat model.
View Article and Find Full Text PDFParkinson's disease (PD) is a neurodegenerative disease in which neuronal apoptosis and associated inflammation are involved in its pathogenesis. However, there is still no specific treatment that can stop PD progression. Isoalantolactone (IAL) plays a role in many inflammation-related diseases.
View Article and Find Full Text PDFParkinson's disease (PD) is a usual disease caused by degeneration of the central nervous system, which features the denaturation and death of dopaminergic neurons in the substantia nigra compact (SNc) of the midbrain. Neuroinflammation casts a consequential role in its pathogenesis, and the excessive activation of microglia as a major part of neuroinflammation cannot be ignored. Studies have indicated that Hordenine (HOR) functioned widely as an anti-oxidant and anti-inflammatory substance, but there are no reports on neuroinflammation effects.
View Article and Find Full Text PDFParkinson's disease (PD), the second primary neurodegenerative disease affecting human health, is mainly characterized by dopaminergic neuron damage in the midbrain and the clinical manifestation of movement disorders. Studies have shown that neuroinflammation plays an important role in the progression of PD. Excessively activated microglia produce several pro-inflammatory mediators, leading to damage to the surrounding neurons and finally inducing neurodegeneration.
View Article and Find Full Text PDFBackground: Diabetes aggravates myocardial ischemia/reperfusion (I/R) injury (MI/RI). The association between high mobility group box 1 protein (HMGB1) and autophagy in diabetic MI/RI remains unknown. Therefore, we investigated whether inhibiting HMGB1 can regulate autophagy in diabetic mice (DM) after I/R injury.
View Article and Find Full Text PDFMicroglia, the main immune cells in the brain, participate in the innate immune response in the central nervous system (CNS). Studies have shown that microglia can be polarized into pro-inflammatory M1 and anti-inflammatory M2 phenotypes. Accumulated evidence suggests that over-activated M1 microglia release pro-inflammatory mediators that damage neurons and lead to Parkinson's disease (PD).
View Article and Find Full Text PDFNumerous studies have shown that over-activation of microglia could cause neuroinflammation and release pro-inflammatory mediators, which could result in neurodegenerative diseases, like Parkinson's disease, Alzheimer's disease etc. Beta-naphthoflavone (BNF) has anti-oxidant and anti-inflammatory effects in borderline tissues, but BNF has not been reported the effect associated with neuroinflammation. Therefore, the purpose of this experiment is to inquiry the impact and mechanism of BNF on neuroinflammation.
View Article and Find Full Text PDFIn neurodegenerative diseases, neuronal damage caused by neuroinflammation is very important. Many studies have suggested that the activation of microglia is critical for the neuroinflammatory process. Therefore, inhibiting neuroinflammation is considered to be a hopeful target for curing neurodegenerative diseases.
View Article and Find Full Text PDFα-Cyperone, extracted from , has been reported to inhibit microglia-mediated neuroinflammation. Oxidative stress and apoptosis play crucial roles in the course of Parkinson's disease (PD). PD is a common neurodegenerative disease characterized by selective death of dopaminergic neurons.
View Article and Find Full Text PDFNeuroinflammation is caused by excessive activation of microglia and plays an essential role in neurodegenerative diseases. After activation, microglia produce several kinds of inflammatory mediators, trigger an excessive inflammatory response, and ultimately destroy the surrounding neurons. Therefore, agents that inhibit neuroinflammation may be potential drug candidates for neurodegenerative diseases.
View Article and Find Full Text PDFMicroglia are the brain's immune cells and play an important role in regulating the microenvironment in the central nervous system. Activated microglia are capable of acquiring the pro-inflammatory (M1) phenotype and anti-inflammatory (M2) phenotype. Overactivation of microglia is neurotoxic and may lead to neuroinflammatory brain disorders.
View Article and Find Full Text PDFNeuroinflammation, characterized by the activation of microglia, is one of the major pathologic processes of Parkinson's disease (PD). Overactivated microglia can release many pro-inflammatory cytokines, which cause an excessive inflammatory response and eventually damage dopaminergic neurons. Therefore, the inhibition of neuroinflammation that results from the overactivation of microglia may be an method for the treatment of PD.
View Article and Find Full Text PDF