Publications by authors named "Dewar Finlay"

Deconvoluting the vibrations and harmonics in solid-solid interfaces is crucial for designing materials with improved performance, durability, and functionality. The measured vibrating microcantilever signal in the dynamic atomic force microscopy (AFM) encompasses a multitude of distinct signatures reflecting a diverse array of material properties. Nevertheless, uncertainties persist in decoding these signatures, primarily arising from the interplay between attractive and repulsive forces.

View Article and Find Full Text PDF

Nanomechanical sensors, due to their small size and high sensitivity to the environment, hold significant promise for various sensing applications. These sensors enable rapid, highly sensitive, and selective detection of biological and biochemical entities as well as mass spectrometry by utilizing the frequency shift of nanomechanical resonators. Nanomechanical systems have been employed to measure the mass of cells and biomolecules and study the fundamentals of surface science such as phase transitions and diffusion.

View Article and Find Full Text PDF

Mechanistic probing of surface potential changes arising from dynamic charge transport is the key to understanding and engineering increasingly complex nanoscale materials and devices. Spatiotemporal averaging in conventional heterodyne detection-based Kelvin probe force microscopy (KPFM) inherently limits its time resolution, causing an irretrievable loss of transient response and higher-order harmonics. Addressing this, we report a wavelet transform (WT)-based methodology capable of quantifying the sub-ms charge dynamics and probing the elusive transient response.

View Article and Find Full Text PDF

Background And Objective: Quantitative measures extracted from ventricular fibrillation (VF) waveform reflect the metabolic state of the myocardium and are associated with survival outcome. The quality of delivered chest compressions during cardiopulmonary resuscitation are also linked with survival. The aim of this research is to explore the viability and effectiveness of a thoracic impedance (TI) based chest compression (CC) guidance system to control CC depth within individual subjects and influence VF waveform properties.

View Article and Find Full Text PDF

Impedance cardiography (ICG) is a low-cost, non-invasive technique that enables the clinical assessment of haemodynamic parameters, such as cardiac output and stroke volume (SV). Conventional ICG recordings are taken from the patient's thorax. However, access to ICG vital signs from the upper-arm brachial artery (as an associated surrogate) can enable user-convenient wearable armband sensor devices to provide an attractive option for gathering ICG trend-based indicators of general health, which offers particular advantages in ambulatory long-term monitoring settings.

View Article and Find Full Text PDF

Inertial sensors are widely used in human motion monitoring. Orientation and position are the two most widely used measurements for motion monitoring. Tracking with the use of multiple inertial sensors is based on kinematic modelling which achieves a good level of accuracy when biomechanical constraints are applied.

View Article and Find Full Text PDF

Cardiovascular Disease (CVD) is amongst the leading cause of death globally, which calls for rapid detection and treatment. Biosensing devices are used for the diagnosis of cardiovascular disease at the point-of-care (POC), with lateral flow assays (LFAs) being particularly useful. However, due to their low sensitivity, most LFAs have been shown to have difficulties detecting low analytic concentrations.

View Article and Find Full Text PDF

Background: Mobile Cardiac Outpatient Telemetry (MCOT) can be used to screen high risk patients for atrial fibrillation (AF). These devices rely primarily on algorithmic detection of AF events, which are then stored and transmitted to a clinician for review. It is critical the positive predictive value (PPV) of MCOT detected AF is high, and this often leads to reduced sensitivity, as device manufacturers try to limit false positives.

View Article and Find Full Text PDF

Deep Convolutional Neural Networks (DCNNs) have been shown to provide improved performance over traditional heuristic algorithms for the detection of arrhythmias from ambulatory ECG recordings. However, these DCNNs have primarily been trained and tested on device-specific databases with standardized electrode positions and uniform sampling frequencies. This work explores the possibility of training a DCNN for Atrial Fibrillation (AF) detection on a database of single‑lead ECG rhythm strips extracted from resting 12‑lead ECGs.

View Article and Find Full Text PDF

Sudden cardiac death (SCD) risk can be reduced by early detection of short-lived and transient cardiac arrhythmias using long-term electrocardiographic (ECG) monitoring. Early detection of ventricular arrhythmias can reduce the risk of SCD by allowing appropriate interventions. Long-term continuous ECG monitoring, using a non-invasive armband-based wearable device is an appealing solution for detecting early heart rhythm abnormalities.

View Article and Find Full Text PDF

Background: The application of artificial intelligence to interpret the electrocardiogram (ECG) has predominantly included the use of knowledge engineered rule-based algorithms which have become widely used today in clinical practice. However, over recent decades, there has been a steady increase in the number of research studies that are using machine learning (ML) to read or interrogate ECG data.

Objective: The aim of this study is to review the use of ML with ECG data using a time series approach.

View Article and Find Full Text PDF

Public access automated external defibrillators (AEDs) represent emergency medical devices that may be used by untrained lay-persons in a life-critical event. As such their usability must be confirmed through simulation testing. In 2020 the novel coronavirus caused a global pandemic.

View Article and Find Full Text PDF

In this commentary paper, we discuss the use of the electrocardiogram to help clinicians make diagnostic and patient referral decisions in acute care settings. The paper discusses the factors that are likely to contribute to the variability and noise in the clinical decision making process for catheterization lab activation. These factors include the variable competence in reading ECGs, the intra/inter rater reliability, the lack of standard ECG training, the various ECG machine and filter settings, cognitive biases (such as automation bias which is the tendency to agree with the computer-aided diagnosis or AI diagnosis), the order of the information being received, tiredness or decision fatigue as well as ECG artefacts such as the signal noise or lead misplacement.

View Article and Find Full Text PDF

Microvascular haemodynamic alterations are associated with coronary artery disease (CAD). The conjunctival microcirculation can easily be assessed non-invasively. However, the microcirculation of the conjunctiva has not been previously explored in clinical algorithms aimed at identifying patients with CAD.

View Article and Find Full Text PDF

Introduction: Representation learning allows artificial intelligence (AI) models to learn useful features from large, unlabelled datasets. This can reduce the need for labelled data across a range of downstream tasks. It was hypothesised that wave segmentation would be a useful form of electrocardiogram (ECG) representation learning.

View Article and Find Full Text PDF

Aim: Automated external defibrillators (AEDs) use various shock protocols with different characteristics when deployed in pediatric mode. The aim of this study is to assess and compare the safety and efficacy of different AED pediatric protocols using novel experimental approaches.

Methods: Two defibrillation protocols (A and B) were assessed across two studies: Protocol A: escalating (50-75-90 J) defibrillation waveform with higher voltage, shorter duration and equal phase durations.

View Article and Find Full Text PDF

To design and implement an easy-to-use, Point-of-Care (PoC) lateral flow immunoassays (LFA) reader and data analysis system, which provides a more in-depth quantitative analysis for LFA images than conventional approaches thereby supporting efficient decision making for potential early risk assessment of cardiovascular disease (CVD). A novel end-to-end system was developed including a portable device with CMOS camera integrated with optimized illumination and optics to capture the LFA images produced using high-sensitivity C-Reactive Protein (hsCRP) (concentration level < 5 mg/L). The images were transmitted via WiFi to a back-end server system for image analysis and classification.

View Article and Find Full Text PDF

Background And Objective: Cloud computing has the ability to offload processing tasks to a remote computing resources. Presently, the majority of biomedical digital signal processing involves a ground-up approach by writing code in a variety of languages. This may reduce the time a researcher or health professional has to process data, while increasing the barrier to entry to those with little or no software development experience.

View Article and Find Full Text PDF

Automated interpretation of the 12-lead ECG has remained an underpinning interest in decades of research that has seen a diversity of computing applications in cardiology. The application of computers in cardiology began in the 1960s with early research focusing on the conversion of analogue ECG signals (voltages) to digital samples. Alongside this, software techniques that automated the extraction of wave measurements and provided basic diagnostic statements, began to emerge.

View Article and Find Full Text PDF

Compartment-based infectious disease models that consider the transmission rate (or contact rate) as a constant during the course of an epidemic can be limiting regarding effective capture of the dynamics of infectious disease. This study proposed a novel approach based on a dynamic time-varying transmission rate with a control rate governing the speed of disease spread, which may be associated with the information related to infectious disease intervention. Integration of multiple sources of data with disease modelling has the potential to improve modelling performance.

View Article and Find Full Text PDF

This paper provides a brief description of how computer programs are used to automatically interpret electrocardiograms (ECGs), and also provides a discussion regarding new opportunities. The algorithms that are typically used today in hospitals are knowledge engineered where a computer programmer manually writes computer code and logical statements which are then used to deduce a possible diagnosis. The computer programmer's code represents the criteria and knowledge that is used by clinicians when reading ECGs.

View Article and Find Full Text PDF

Electrocardiographic imaging is an imaging modality that has been introduced recently to help in visualizing the electrical activity of the heart and consequently guide the ablation therapy for ventricular arrhythmias. One of the main challenges of this modality is that the electrocardiographic signals recorded at the torso surface are contaminated with noise from different sources. Low amplitude leads are more affected by noise due to their low peak-to-peak amplitude.

View Article and Find Full Text PDF

Background: A 12-lead electrocardiogram (ECG) is the most commonly used method to diagnose patients with cardiovascular diseases. However, there are a number of possible misinterpretations of the ECG that can be caused by several different factors, such as the misplacement of chest electrodes.

Objective: The aim of this study is to build advanced algorithms to detect precordial (chest) electrode misplacement.

View Article and Find Full Text PDF

Purpose: Congenital heart disease (CHD) is the most common live birth defect and a proportion of these patients have chronic hypoxia. Chronic hypoxia leads to secondary erythrocytosis resulting in microvascular dysfunction and increased thrombosis risk. The conjunctival microcirculation is easily accessible for imaging and quantitative assessment.

View Article and Find Full Text PDF

Microcirculatory dysfunction occurs early in cardiovascular disease (CVD) development. Acute myocardial infarction (MI) is a late consequence of CVD. The conjunctival microcirculation is readily-accessible for quantitative assessment and has not previously been studied in MI patients.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_session91bbsgbgcl9fggj68qdvjojmi8asq1na): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once