Publications by authors named "Devulapally Koteshwar"

Photodynamic therapy (PDT) is a promising non-invasive treatment modality for cancer and can be potentiated by combination with chemotherapy. Here, we combined PDT of novel porphyrin-based photosensitizers with low dose doxorubicin (Dox) to get maximum outcome. Dox potentiated and showed synergism with PDT under in vitro conditions on CT26.

View Article and Find Full Text PDF

A novel zinc phthalocyanine derivative [2(3), 9(10), 16(17), 23(24) tetrakis-4-((4-(1,4,5-triphenyl-1-imidazol-2-yl)phenyl)ethynyl)phthalocyanine zinc(ii) (PBIPC)] was synthesized by incorporating a triphenyl imidazole moiety at its peripheral positions. The detailed mechanisms of absorption, emission, electrochemical, nonlinear optical (NLO) and photophysical (excited state dynamics) properties of PBIPC were explored. The absorption and emission properties of the compound were studied in different solvents.

View Article and Find Full Text PDF

Spiro-OMeTAD is widely used as thehole-transporting material (HTM) in perovskite solar cells (PSC), which extracts positive charges and protects the perovskite materials from metal electrode, setting a new world-record efficiency of more than 20 %. Spiro-OMeTAD layer engross moisture leading to the degradation of perovskite, and therefore, has poor air stability. It is also expensive therefore limiting scale-up, so macrocyclic metal complex derivatives (MMDs) could be a suitable replacement.

View Article and Find Full Text PDF

Porphyrins are well-known anticancer agents because of their high binding affinity for G-quadruplex DNA and excellent photophysical properties. Several studies carried out using TMPyP4 established it as an efficient chemotherapeutic and a photodynamic therapeutic (PDT) agent, but its use as a lead molecule has been restricted because of its high level of binding to double-stranded DNA (dsDNA), which may have side effects on normal cells and tissues. To minimize its interaction with dsDNA and to enhance internalization into cells, an analogue of TMPyP4 (5Me) was synthesized.

View Article and Find Full Text PDF