Canada's livestock production and human populations are concentrated in southern regions. Understanding spatial and temporal distributions of animals and excreted nutrients is key to optimizing manure resources and minimizing impact of livestock. Here, we identify manureshed concerns and opportunities by reconciling nitrogen supply and demand on a regional and national scale.
View Article and Find Full Text PDFIt is generally accepted that land use and land management practices impact climate change through sequestration of carbon in soils, but modulation of surface energy budget can also be important. Using Landsat data to characterize cropland albedos in Canada's three prairie soil zones, this study estimates the atmospheric carbon equivalent drawdown of albedo radiative forcing for three management practices: 1) moving from conventional tillage to no-till, 2) eliminating summer fallow in crop rotations, and 3) growing crops with higher albedos. In a 50-year time horizon, conversion from conventional tillage to no-till results in a total equivalent atmospheric CO (CO-eq) drawdown of 1.
View Article and Find Full Text PDFAlongside the steep reductions needed in fossil fuel emissions, natural climate solutions (NCS) represent readily deployable options that can contribute to Canada's goals for emission reductions. We estimate the mitigation potential of 24 NCS related to the protection, management, and restoration of natural systems that can also deliver numerous co-benefits, such as enhanced soil productivity, clean air and water, and biodiversity conservation. NCS can provide up to 78.
View Article and Find Full Text PDFEstimating the greenhouse gas (GHG) emissions from agricultural systems is important in order to assess the impact of agriculture on climate change. In this study experimental data supplemented with results from a biophysical model (DNDC) were combined with life cycle assessment (LCA) to investigate the impact of management strategies on global warming potential of long-term cropping systems at two locations (Breton and Ellerslie) in Alberta, Canada. The aim was to estimate the difference in global warming potential (GWP) of cropping systems due to N fertilizer reduction and residue removal.
View Article and Find Full Text PDFTo assess tradeoffs between environmental sustainability and changes in food production on agricultural land in Canada the Unified Livestock Industry and Crop Emissions Estimation System (ULICEES) was developed. It incorporates four livestock specific GHG assessments in a single model. To demonstrate the application of ULICEES, 10% of beef cattle protein production was assumed to be displaced with an equivalent amount of pork protein.
View Article and Find Full Text PDF