Breast cancer brain metastasis (BCBM) is a lethal disease with no effective treatments. Prior work has shown that brain cancers and metastases are densely infiltrated with anti-inflammatory, protumourigenic tumour-associated macrophages, but the role of brain-resident microglia remains controversial because they are challenging to discriminate from other tumour-associated macrophages. Using single-cell RNA sequencing, genetic and humanized mouse models, we specifically identify microglia and find that they play a distinct pro-inflammatory and tumour-suppressive role in BCBM.
View Article and Find Full Text PDFThe adult human breast is comprised of an intricate network of epithelial ducts and lobules that are embedded in connective and adipose tissue. Although most previous studies have focused on the breast epithelial system, many of the non-epithelial cell types remain understudied. Here we constructed the comprehensive Human Breast Cell Atlas (HBCA) at single-cell and spatial resolution.
View Article and Find Full Text PDFNiche signals maintain stem cells in a prolonged quiescence or transiently activate them for proper regeneration. Altering balanced niche signalling can lead to regenerative disorders. Melanocytic skin nevi in human often display excessive hair growth, suggesting hair stem cell hyperactivity.
View Article and Find Full Text PDFThe adult human breast comprises an intricate network of epithelial ducts and lobules that are embedded in connective and adipose tissue. While previous studies have mainly focused on the breast epithelial system, many of the non-epithelial cell types remain understudied. Here, we constructed a comprehensive Human Breast Cell Atlas (HBCA) at single-cell and spatial resolution.
View Article and Find Full Text PDFMetastasis is a fatal disease where research progress has been hindered by a lack of authentic experimental models. Here, we develop a 3D tumor sphere culture-transplant system that facilitates the growth and engineering of patient-derived xenograft (PDX) tumor cells for functional metastasis assays in vivo. Orthotopic transplantation and RNA sequencing (RNA-seq) analyses show that PDX tumor spheres maintain tumorigenic potential, and the molecular marker and global transcriptome signatures of native tumor cells.
View Article and Find Full Text PDFMitochondria display complex morphology and movements, which complicates their segmentation and tracking in time-lapse images. Here, we introduce Mitometer, an algorithm for fast, unbiased, and automated segmentation and tracking of mitochondria in live-cell two-dimensional and three-dimensional time-lapse images. Mitometer requires only the pixel size and the time between frames to identify mitochondrial motion and morphology, including fusion and fission events.
View Article and Find Full Text PDFBone marrow-derived human mesenchymal stem cells (hMSCs) are recruited to damaged or inflamed tissues where they contribute to tissue repair. This multi-step process involves chemokine-directed invasion of hMSCs and on-site release of factors that influence target cells or tumor tissues. However, the underlying molecular mechanisms are largely unclear.
View Article and Find Full Text PDFAround 95% of anti-cancer drugs that show promise during preclinical study fail to gain FDA-approval for clinical use. This failure of the preclinical pipeline highlights the need for improved, physiologically-relevant in vitro models that can better serve as reliable drug-screening and disease modeling tools. The vascularized micro-tumor (VMT) is a novel three-dimensional model system (tumor-on-a-chip) that recapitulates the complex human tumor microenvironment, including perfused vasculature, within a transparent microfluidic device, allowing real-time study of drug responses and tumor-stromal interactions.
View Article and Find Full Text PDFAlthough metastasis remains the cause of most cancer-related mortality, mechanisms governing seeding in distal tissues are poorly understood. Here, we establish a robust method for the identification of global transcriptomic changes in rare metastatic cells during seeding using single-cell RNA sequencing and patient-derived-xenograft models of breast cancer. We find that both primary tumours and micrometastases display transcriptional heterogeneity but micrometastases harbour a distinct transcriptome program conserved across patient-derived-xenograft models that is highly predictive of poor survival of patients.
View Article and Find Full Text PDFTumours comprise a heterogeneous collection of cells with distinct genetic and phenotypic properties that can differentially promote progression, metastasis and drug resistance. Emerging single-cell technologies provide a new opportunity to profile individual cells within tumours and investigate what roles they play in these processes. This Review discusses key technological considerations for single-cell studies in cancer, new findings using single-cell technologies and critical open questions for future applications.
View Article and Find Full Text PDFBreast cancer arises from breast epithelial cells that acquire genetic alterations leading to subsequent loss of tissue homeostasis. Several distinct epithelial subpopulations have been proposed, but complete understanding of the spectrum of heterogeneity and differentiation hierarchy in the human breast remains elusive. Here, we use single-cell mRNA sequencing (scRNAseq) to profile the transcriptomes of 25,790 primary human breast epithelial cells isolated from reduction mammoplasties of seven individuals.
View Article and Find Full Text PDFTumor endothelial cells (TEC) play an indispensible role in tumor growth and metastasis although much of the detailed mechanism still remains elusive. In this study we characterized and compared the global gene expression profiles of TECs and control ECs isolated from human breast cancerous tissues and reduction mammoplasty tissues respectively by single cell RNA sequencing (scRNA-seq). Based on the qualified scRNA-seq libraries that we made, we found that 1302 genes were differentially expressed between these two EC phenotypes.
View Article and Find Full Text PDFThe discoidin domain receptor 1 (DDR1) is overexpressed in breast carcinoma cells. Low DDR1 expression is associated with worse relapse-free survival, reflecting its controversial role in cancer progression. We detected DDR1 on luminal cells but not on myoepithelial cells of DDR1 mice.
View Article and Find Full Text PDFThere is limited data describing endothelial cell (EC) gene expression between aneurysms and arteries partly because of risks associated with surgical tissue collection. Endovascular biopsy (EB) is a lower risk alternative to conventional surgical methods, though no such efforts have been attempted for aneurysms. We sought (1) to establish the feasibility of EB to isolate viable ECs by fluorescence-activated cell sorting (FACS), (2) to characterize the differences in gene expression by anatomic location and rupture status using single-cell qPCR, and (3) to demonstrate the utility of unsupervised clustering algorithms to identify cell subpopulations.
View Article and Find Full Text PDFMembrane nanotubes are cytosolic protrusions with diameters <1 µm that extend between cells separated by tens of µm. They mediate several forms of intercellular communication and are upregulated in diverse diseases. Difficulties in visualizing and studying nanotubes within intact tissues have, however, prompted skepticism regarding their in vivo relevance, and most studies have been confined to cell culture systems.
View Article and Find Full Text PDFDespite decades of effort, little progress has been made to improve the treatment of cancer metastases. To leverage the central role of the mechanoenvironment in cancer metastasis, we present a mechanoresponsive cell system (MRCS) to selectively identify and treat cancer metastases by targeting the specific biophysical cues in the tumor niche in vivo. Our MRCS uses mechanosensitive promoter-driven mesenchymal stem cell (MSC)-based vectors, which selectively home to and target cancer metastases in response to specific mechanical cues to deliver therapeutics to effectively kill cancer cells, as demonstrated in a metastatic breast cancer mouse model.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
March 2017
The transcription factor GATA3 is the master regulator that drives mammary luminal epithelial cell differentiation and maintains mammary gland homeostasis. Loss of is associated with aggressive breast cancer development. We have identified ZNF503/ZEPPO2 zinc-finger elbow-related proline domain protein 2 (ZPO2) as a transcriptional repressor of expression and transcriptional activity that induces mammary epithelial cell proliferation and breast cancer development.
View Article and Find Full Text PDFTriple-negative breast cancer (TNBC), in which cells lack expression of the estrogen receptor (ER), the progesterone receptor (PR) and the ERBB2 (also known as HER2) receptor, is the breast cancer subtype with the poorest outcome. No targeted therapy is available against this subtype of cancer owing to a lack of validated molecular targets. We previously reported that signaling involving MYC-an essential, pleiotropic transcription factor that regulates the expression of hundreds of genes-is disproportionally higher in triple-negative (TN) tumors than in receptor-positive (RP) tumors.
View Article and Find Full Text PDFPurpose: To develop a strategy of achieving targeted collection of endothelial cells (ECs) by endovascular methods and analyzing the gene expression profiles of collected single ECs.
Methods And Results: 134 ECs and 37 leukocytes were collected from four patients' intra-iliac artery endovascular guide wires by fluorescence activated cell sorting (FACS) and analyzed by single-cell quantitative RT-PCR for expression profile of 48 genes. Compared to CD45 leukocytes, the ECs expressed higher levels ( < 0.
Cold Spring Harb Protoc
December 2015
Cleared mammary fat pad (MFP) transplantation has been a standard technique for studies of mammary development and cancer for several decades. The mammary gland is comprised of several fundamental components: The epithelial compartment contains basal/myoepithelial cells and luminal cells, and the stromal compartment (called the MFP) contains adipocytes, smooth muscle cells, fibroblasts, and immune cells. In 3- to 4-wk-old female mice, the mammary epithelium is concentrated very close to the nipple and has not yet grown beyond the mammary lymph node to penetrate the bulk of the MFP.
View Article and Find Full Text PDFDespite major advances in understanding the molecular and genetic basis of cancer, metastasis remains the cause of >90% of cancer-related mortality. Understanding metastasis initiation and progression is critical to developing new therapeutic strategies to treat and prevent metastatic disease. Prevailing theories hypothesize that metastases are seeded by rare tumour cells with unique properties, which may function like stem cells in their ability to initiate and propagate metastatic tumours.
View Article and Find Full Text PDFThe microenvironment provides cues that control the behavior of epithelial stem and progenitor cells. Here, we identify matrix metalloproteinase-3 (MMP3) as a regulator of Wnt signaling and mammary stem cell (MaSC) activity. We show that MMP3 overexpression promotes hyperplastic epithelial growth, surprisingly, in a nonproteolytic manner via its hemopexin (HPX) domain.
View Article and Find Full Text PDF