The last couple of decades have seen the rapid advancement of genomic technologies (GT) and their equally rapid adoption into clinical testing. Regardless of specialty, all genetic counselors are unified by the fundamental goal to aid in diagnosing patient's genetic disease underscoring the importance for genetic counselors to maintain an in-depth understanding of GT. The National Society of Genetic Counselors' (NSGC) GT Special Interest Group conducted an online survey of NSGC members to assess current genomic technologies knowledge gaps.
View Article and Find Full Text PDFBackground: Advances in sequencing technology have led to expanded use of multi-gene panel tests (MGPTs) for clinical diagnostics. Well-designed MGPTs must balance increased detection of clinically significant findings while mitigating the increase in variants of uncertain significance (VUS). To maximize clinical utililty, design of such panels should include comprehensive gene vetting using a standardized clinical validity (CV) scoring system.
View Article and Find Full Text PDFPurpose: While chromosomal regions of homozygosity (ROH) may implicate genes in known recessive disorders, their correlation to disease pathogenicity remains unclear. ROH around the centromere of the X chromosome (pericentromeric, pROH) is regarded as benign, although this has not been empirically demonstrated.
Methods: We examined microarray results from 122 female individuals harboring ROH bordering the X centromere.
Current practice by clinical diagnostic laboratories is to utilize online prediction programs to help determine the significance of novel variants in a given gene sequence. However, these programs vary widely in their methods and ability to correctly predict the pathogenicity of a given sequence change. The performance of 17 publicly available pathogenicity prediction programs was assayed using a dataset consisting of 122 credibly pathogenic and benign variants in genes associated with the RASopathy family of disorders and limb-girdle muscular dystrophy.
View Article and Find Full Text PDFCampomelic dysplasia (CD) is a skeletal dysplasia characterized by Pierre Robin sequence (PRS), shortened and bowed long bones, airway instability, and the potential for sex reversal. A subtype of CD, acampomelic CD (ACD), is seen in approximately 10% of cases and preserves long bone straightness. Both syndromes are caused by alterations in SOX9, with translocations and missense mutations being overrepresented in ACD cases.
View Article and Find Full Text PDFBackground: There is tremendous potential for genome sequencing to improve clinical diagnosis and care once it becomes routinely accessible, but this will require formalizing research methods into clinical best practices in the areas of sequence data generation, analysis, interpretation and reporting. The CLARITY Challenge was designed to spur convergence in methods for diagnosing genetic disease starting from clinical case history and genome sequencing data. DNA samples were obtained from three families with heritable genetic disorders and genomic sequence data were donated by sequencing platform vendors.
View Article and Find Full Text PDFType 1 pseudohypoaldosteronism (PHA1) is a salt wasting syndrome caused by renal resistance to aldosterone. Primary renal PHA1 or autosomal dominant PHA1 is caused by mutations in mineralocorticoids receptor gene (NR3C2), while secondary PHA1 is frequently associated with urinary tract infection (UTI) and/or urinary tract malformations (UTM). We report a 14-day-old male infant presenting with severe hyperkalemia, hyponatremic dehydration, metabolic acidosis, and markedly elevated serum aldosterone level, initially thought to have secondary PHA1 due to the associated UTI and posterior urethral valves.
View Article and Find Full Text PDFA newborn with severe microcephaly and a history of parental consanguinity was referred for cytogenetic analysis and subsequently for genetic evaluation. While a 46,XY karyotype was eventually obtained, premature chromosome condensation was observed. A head MRI confirmed primary microcephaly.
View Article and Find Full Text PDFShort tandem repeat (STR) loci are commonly used in forensic casework, familial analysis for human identification, and for monitoring hematopoietic cell engraftment after bone marrow transplant. Unexpected genetic variation leading to sequence and length differences in STR loci can complicate STR typing, and presents challenges in casework interpretation. Copy number variation (CNV) is a relatively recently identified form of genetic variation consisting of genomic regions present at variable copy numbers within an individual compared to a reference genome.
View Article and Find Full Text PDFDeletions of the long arm of chromosome 4 are rare but have been previously reported to be associated with craniofacial anomalies, digital anomalies, developmental delay, growth failure, and cardiovascular anomalies. Strehle et al. previously presented 20 patients with 4q deletions and began to construct a phenotype-genotype map for chromosome 4q.
View Article and Find Full Text PDFWe describe an 11 month old female with Prader-Willi syndrome (PWS) resulting from an atypically large deletion of proximal 15q due to a de novo 3;15 unbalanced translocation. The 10.6 Mb deletion extends from the chromosome 15 short arm and is not situated in a region previously reported as a common distal breakpoint for unbalanced translocations.
View Article and Find Full Text PDFGenomic rearrangements involving AUTS2 (7q11.22) are associated with autism and intellectual disability (ID), although evidence for causality is limited. By combining the results of diagnostic testing of 49,684 individuals, we identified 24 microdeletions that affect at least one exon of AUTS2, as well as one translocation and one inversion each with a breakpoint within the AUTS2 locus.
View Article and Find Full Text PDFThe 12q14 microdeletion syndrome is a rare condition that has previously been characterized by pre- and postnatal growth restriction, proportionate short stature, failure to thrive, developmental delay, and osteopoikilosis. Previously reported microdeletions within this region have ranged in size from 1.83 to 10.
View Article and Find Full Text PDFThe presence of more than one cell line in an individual may often be missed by classical cytogenetic analysis due to a low percentage of affected cells or analysis of cells from an unaffected or less affected germ layer. Array comparative genomic hybridization (aCGH) from whole blood or tissue is an important adjunct to standard karyotyping due to its ability to detect genomic imbalances that are below the resolution of karyotype analysis. We report results from three unrelated patients in whom aCGH revealed mosaicism not identified by peripheral blood chromosome analysis.
View Article and Find Full Text PDFPersons with neurodevelopmental disorders or autism spectrum disorder (ASD) often harbor chromosomal microdeletions, yet the individual genetic contributors within these regions have not been systematically evaluated. We established a consortium of clinical diagnostic and research laboratories to accumulate a large cohort with genetic alterations of chromosomal region 2q23.1 and acquired 65 subjects with microdeletion or translocation.
View Article and Find Full Text PDFArray comparative genomic hybridization has increasingly become the standard of care to evaluate patients for genomic imbalance. As the patient population evaluated by microarray expands, there is certain to be an increase in the detection of unexpected, yet common diseases. When array results predict a late-onset disorder or cancer predisposition, it becomes a challenge for physicians and counselors to adequately address with patients.
View Article and Find Full Text PDF