Am J Physiol Heart Circ Physiol
December 2024
Nearly 1% of babies are born with congenital heart disease-many of whom will require heart surgery within the first few years of life. A detailed understanding of cardiac maturation can help to expand our knowledge on cardiac diseases that develop during gestation, identify age-appropriate drug therapies, and inform clinical care decisions related to surgical repair and postoperative management. Yet, to date, our knowledge of the temporal changes that cardiomyocytes undergo during postnatal development is limited.
View Article and Find Full Text PDFAm J Physiol Heart Circ Physiol
July 2024
Human-induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) are frequently used for preclinical cardiotoxicity testing and remain an important tool for confirming model-based predictions of drug effects in accordance with the comprehensive in vitro proarrhythmia assay (CiPA). Despite the considerable benefits hiPSC-CMs provide, concerns surrounding experimental reproducibility have emerged. We investigated the effects of temporal changes and experimental parameters on hiPSC-CM electrophysiology.
View Article and Find Full Text PDFBackground: Nearly 1% or 1.3 million babies are born with congenital heart disease (CHD) globally each year - many of whom will require palliative or corrective heart surgery within the first few years of life. A detailed understanding of cardiac maturation can help to expand our knowledge on cardiac diseases that develop during gestation, identify age-appropriate cardiovascular drug therapies, and inform clinical care decisions related to surgical repair, myocardial preservation, or postoperative management.
View Article and Find Full Text PDFBackground: Phthalate chemicals are used to manufacture plastic medical products, including many components of cardiopulmonary bypass (CPB) circuits. We aimed to quantify iatrogenic phthalate exposure in pediatric patients undergoing cardiac surgery and examine the link between phthalate exposure and postoperative outcomes.
Study Design And Methods: The study included pediatric patients undergoing (n=122) unique cardiac surgeries at Children's National Hospital.
Unlabelled: Human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) are frequently used for preclinical cardiotoxicity testing and remain an important tool for confirming model-based predictions of drug effects in accordance with the Comprehensive Proarrhythmia Assay (CiPA) initiative. Despite the considerable benefits hiPSC-CMs provide, concerns surrounding experimental reproducibility have emerged. Our study aimed to investigate the effects of temporal changes and experimental parameters on hiPSC-CM electrophysiology.
View Article and Find Full Text PDFDi-2-ethylhexyl phthalate (DEHP) is commonly used in the manufacturing of plastic materials, including intravenous bags, blood storage bags, and medical-grade tubing. DEHP can leach from plastic medical products, which can result in inadvertent patient exposure. DEHP concentrations were measured in red blood cell units stored between 7 and 42 days (17-119 μg/ml).
View Article and Find Full Text PDFDi-2-ethylhexylphthalate (DEHP) is commonly used in the manufacturing of plastic materials, including intravenous bags, blood storage bags, and medical-grade tubing. DEHP can leach from plastic medical products, which can result in inadvertent patient exposure. DEHP concentrations were measured in red blood cell (RBC) units stored between 7-42 days (23-119 μg/mL).
View Article and Find Full Text PDFImportance: Phthalate chemicals are used to manufacture disposable plastic medical products, including blood storage bags and components of cardiopulmonary bypass (CPB) circuits. During cardiac surgery, patients can be inadvertently exposed to phthalate chemicals that are released from these plastic products.
Objective: To quantify iatrogenic phthalate chemical exposure in pediatric patients undergoing cardiac surgery, and examine the link between phthalate exposure and post-operative outcomes.
Bisphenol A (BPA) is a high-production volume chemical used to manufacture consumer and medical-grade plastic products. Due to its ubiquity, the general population can incur daily environmental exposure to BPA, whereas heightened exposure has been reported in intensive care patients and industrial workers. Due to health concerns, structural analogs are being explored as replacements for BPA.
View Article and Find Full Text PDFAm J Physiol Heart Circ Physiol
May 2021
Compared with acyanotic congenital heart disease (CHD), cyanotic CHD has an increased risk of lifelong mortality and morbidity. These adverse outcomes may be attributed to delayed cardiomyocyte maturation, since the transition from a hypoxic fetal milieu to oxygen-rich postnatal environment is disrupted. We established a rodent model to replicate hypoxic myocardial conditions spanning perinatal development, and tested the hypothesis that chronic hypoxia impairs cardiac development.
View Article and Find Full Text PDFBackground The red blood cell (RBC) storage lesion is a series of morphological, functional, and metabolic changes that RBCs undergo following collection, processing, and refrigerated storage for clinical use. Since the biochemical attributes of the RBC unit shifts with time, transfusion of older blood products may contribute to cardiac complications, including hyperkalemia and cardiac arrest. We measured the direct effect of storage age on cardiac electrophysiology and compared it with hyperkalemia, a prominent biomarker of storage lesion severity.
View Article and Find Full Text PDFAm J Physiol Heart Circ Physiol
February 2020
Rodent models are frequently employed in cardiovascular research, yet our understanding of pediatric cardiac physiology has largely been deduced from more simplified two-dimensional cell studies. Previous studies have shown that postnatal development includes an alteration in the expression of genes and proteins involved in cell coupling, ion channels, and intracellular calcium handling. Accordingly, we hypothesized that postnatal cell maturation is likely to lead to dynamic alterations in whole heart electrophysiology and calcium handling.
View Article and Find Full Text PDF