Publications by authors named "Devlina Chakravarty"

Recent work suggests that AlphaFold (AF)-a deep learning-based model that can accurately infer protein structure from sequence-may discern important features of folded protein energy landscapes, defined by the diversity and frequency of different conformations in the folded state. Here, we test the limits of its predictive power on fold-switching proteins, which assume two structures with regions of distinct secondary and/or tertiary structure. We find that (1) AF is a weak predictor of fold switching and (2) some of its successes result from memorization of training-set structures rather than learned protein energetics.

View Article and Find Full Text PDF

Though typically associated with a single folded state, some globular proteins remodel their secondary and/or tertiary structures in response to cellular stimuli. AlphaFold2 (AF2) readily generates one dominant protein structure for these fold-switching (a.k.

View Article and Find Full Text PDF

Recent work suggests that AlphaFold2 (AF2)-a deep learning-based model that can accurately infer protein structure from sequence-may discern important features of folded protein energy landscapes, defined by the diversity and frequency of different conformations in the folded state. Here, we test the limits of its predictive power on fold-switching proteins, which assume two structures with regions of distinct secondary and/or tertiary structure. Using several implementations of AF2, including two published enhanced sampling approaches, we generated >280,000 models of 93 fold-switching proteins whose experimentally determined conformations were likely in AF2's training set.

View Article and Find Full Text PDF

Though typically associated with a single folded state, globular proteins are dynamic and often assume alternative or transient structures important for their functions. Wayment-Steele, et al. steered ColabFold to predict alternative structures of several proteins using a method they call AF-cluster.

View Article and Find Full Text PDF

Although homologous protein sequences are expected to adopt similar structures, some amino acid substitutions can interconvert α-helices and β-sheets. Such fold switching may have occurred over evolutionary history, but supporting evidence has been limited by the: (1) abundance and diversity of sequenced genes, (2) quantity of experimentally determined protein structures, and (3) assumptions underlying the statistical methods used to infer homology. Here, we overcome these barriers by applying multiple statistical methods to a family of ~600,000 bacterial response regulator proteins.

View Article and Find Full Text PDF

Though many folded proteins assume one stable structure that performs one function, a small-but-increasing number remodel their secondary and tertiary structures and change their functions in response to cellular stimuli. These fold-switching proteins regulate biological processes and are associated with autoimmune dysfunction, severe acute respiratory syndrome coronavirus-2 infection, and more. Despite their biological importance, it is difficult to computationally predict fold switching.

View Article and Find Full Text PDF

AlphaFold2 has revolutionized protein structure prediction by leveraging sequence information to rapidly model protein folds with atomic-level accuracy. Nevertheless, previous work has shown that these predictions tend to be inaccurate for structurally heterogeneous proteins. To systematically assess factors that contribute to this inaccuracy, we tested AlphaFold2's performance on 98-fold-switching proteins, which assume at least two distinct-yet-stable secondary and tertiary structures.

View Article and Find Full Text PDF

Proteins may vary from being rigid to having flexible regions to being completely disordered, either as an intrinsically disordered protein (IDP) or having specific intrinsically disordered regions (IDRs). IDPs/IDRs can form complexes otherwise impossible, such as wrapping around the binding partner, hence providing the plasticity needed for achieving assemblies with specific functions. IDRs can exhibit promiscuity, using the same region in the sequence to bind multiple partners, and act as hubs in protein-protein interaction network (an essential part of the cell signalling network).

View Article and Find Full Text PDF

COVID-19 is characterized by an unprecedented abrupt increase in the viral transmission rate (SARS-CoV-2) relative to its pandemic evolutionary ancestor, SARS-CoV (2003). The complex molecular cascade of events related to the viral pathogenicity is triggered by the Spike protein upon interacting with the ACE2 receptor on human lung cells through its receptor binding domain (RBD). One potential therapeutic strategy to combat COVID-19 could thus be limiting the infection by blocking this key interaction.

View Article and Find Full Text PDF

Structures of proteins and protein-protein complexes are determined by the same physical principles and thus share a number of similarities. At the same time, there could be differences because in order to function, proteins interact with other molecules, undergo conformations changes, and so forth, which might impose different restraints on the tertiary versus quaternary structures. This study focuses on structural properties of protein-protein interfaces in comparison with the protein core, based on the wealth of currently available structural data and new structure-based approaches.

View Article and Find Full Text PDF

Comparative docking is based on experimentally determined structures of protein-protein complexes (templates), following the paradigm that proteins with similar sequences and/or structures form similar complexes. Modeling utilizing structure similarity of target monomers to template complexes significantly expands structural coverage of the interactome. Template-based docking by structure alignment can be performed for the entire structures or by aligning targets to the bound interfaces of the experimentally determined complexes.

View Article and Find Full Text PDF
Article Synopsis
  • The CAPRI Round 46 involved 20 protein assembly targets, blending 14 homo-oligomers with 6 heterocomplexes, highlighting challenges in modeling.
  • A significant number of models (~2000 per target) were submitted by about 30 teams, with better performance seen in easier targets but struggles with complex compositions, as evidenced by only 3 out of 11 difficult targets yielding medium to high-quality models.
  • Analysis revealed a decline in prediction quality for binding interface residues compared to previous rounds, pointing to areas needing improvement for future challenges.
View Article and Find Full Text PDF

Characterization and prediction of the DNA-biding regions in proteins are essential for our understanding of how proteins recognize/bind DNA. We analyze the unbound (U) and the bound (B) forms of proteins from the protein-DNA docking benchmark that contains 66 binary protein-DNA complexes along with their unbound counterparts. Proteins binding DNA undergo greater structural changes on complexation (in particular, those in the enzyme category) than those involved in protein-protein interactions (PPI).

View Article and Find Full Text PDF

The FKBP22 and the related peptidyl-prolyl cis-trans isomerases dimerize using their N-terminal domains. Conversely, their C-terminal domains possess both the substrate and inhibitor binding sites. To delineate the roles of a conserved Tyr residue at their N-terminal domains, we have studied a FKBP22 mutant that carries an Ala in place of the conserved Tyr at position 15.

View Article and Find Full Text PDF

Protein interactions are essential in all biological processes. The changes brought about in the structure when a free component forms a complex with another molecule need to be characterized for a proper understanding of molecular recognition as well as for the successful implementation of docking algorithms. Here, unbound (U) and bound (B) forms of protein structures from the Protein-Protein Interaction Affinity Database are compared in order to enumerate the changes that occur at the interface atoms/residues in terms of the solvent-accessible surface area (ASA), secondary structure, temperature factors (B factors) and disorder-to-order transitions.

View Article and Find Full Text PDF

Cholera pathogenesis occurs due to synergistic pro-secretory effects of several toxins, such as cholera toxin (CTX) and Accessory cholera enterotoxin (Ace) secreted by Vibrio cholerae strains. Ace activates chloride channels stimulating chloride/bicarbonate transport that augments fluid secretion resulting in diarrhea. These channels have been targeted for drug development.

View Article and Find Full Text PDF

FKBP22, an -specific peptidyl-prolyl - isomerase, shows substantial homology with the Mip-like virulence factors. Mip-like proteins are homodimeric and possess a V-shaped conformation. Their N-terminal domains form dimers, whereas their C-terminal domains bind protein/peptide substrates and distinct inhibitors such as rapamycin and FK506.

View Article and Find Full Text PDF

Dystrophin is a long, rod-shaped cytoskeleton protein implicated in muscular dystrophy (MDys). Utrophin is the closest autosomal homolog of dystrophin. Both proteins have N-terminal actin-binding domain (N-ABD), a central rod domain and C-terminal region.

View Article and Find Full Text PDF
Article Synopsis
  • HlyU is a transcriptional regulator found in various Vibrio species, activating important virulence genes in V. cholerae, V. vulnificus, and V. anguillarum.
  • The study identifies a specific 17-bp DNA sequence where HlyU binds near the hlyA promoter, showing that it functions as a dimer and enhances gene activity.
  • Molecular dynamics simulations reveal the significance of certain mutations in HlyU's structure that disrupt DNA binding and suggest potential redox control mechanisms affecting its function.
View Article and Find Full Text PDF

Curcumin, derived from rhizomes of the Curcuma longa plant, is known to possess a wide range of medicinal properties. We have examined the interaction of curcumin with actin and determined their binding and thermodynamic parameters using isothermal titration calorimetry. Curcumin is weakly fluorescent in aqueous solution, and binding to actin enhances fluorescence several fold with a large blue shift in the emission maximum.

View Article and Find Full Text PDF

The buried surface area (BSA), which measures the size of the interface in a protein-protein complex may differ from the accessible surface area (ASA) lost upon association (which we call DSA), if conformation changes take place. To evaluate the DSA, we measure the ASA of the interface atoms in the bound and unbound states of the components of 144 protein-protein complexes taken from the Protein-Protein Interaction Affinity Database of Kastritis et al. (2011).

View Article and Find Full Text PDF

Protein l-isoaspartyl-O-methyltransferase (PIMT) is an ubiquitous enzyme widely distributed in cells and plays a role in the repair of deamidated and isomerized proteins. In this study, we show that this enzyme is present in cytosolic extract of Vibrio cholerae, an enteric pathogenic Gram-negative bacterium and is enzymatically active. Additionally, we focus on the detailed biophysical characterization of the recombinant PIMT from V.

View Article and Find Full Text PDF

Tubulin, an α,β heterodimer, has four distinct ligand binding sites (for paclitaxel, peloruside/laulimalide, vinca, and colchicine). The site where colchicine binds is a promising drug target for arresting cell division and has been observed to accommodate compounds that are structurally diverse but possess comparable affinity. This investigation, using two such structurally different ligands as probes (one being colchicine itself and another, TN16), aims to provide insight into the origin of this diverse acceptability to provide a better perspective for the design of novel therapeutic molecules.

View Article and Find Full Text PDF

In biological fluids, nanoparticles are always surrounded by proteins. As the protein is adsorbed on the surface, the extent of adsorption and the effect on the protein conformation and stability are dependent on the chemical nature, shape, and size of the nanoparticle (NP). We have carried out a detailed investigation on the interaction of bovine serum albumin (BSA) with polyethyleneimine-functionalized ZnO nanoparticles (ZnO-PEI).

View Article and Find Full Text PDF