Publications by authors named "Devinder Mahajan"

The production of pure water plays a pivotal role in enabling sustainable green hydrogen production through electrolysis. The current industrial approach for generating pure water relies on energy-intensive techniques such as reverse osmosis. This study unveils a straightforward method to produce pure water, employing real-world units derived from previously simulated and developed laboratory devices.

View Article and Find Full Text PDF

Residential biomass combustion is a source of carbonaceous aerosol. Inefficient combustion, particularly of solid fuels produces large quantities of black and brown carbon (BC and BrC). These particle types are important as they have noted effects on climate forcing and human health.

View Article and Find Full Text PDF

The use of wood as a fuel for home heating is a concern from an environmental health and safety perspective as biomass combustion appliances emit high concentrations of particulate matter. Wood burning significantly contributes to wintertime particulate matter concentrations in many states in the northern United States. Of particular concern are outdoor wood-fired hydronic heaters.

View Article and Find Full Text PDF

The propane hydrate formation was proposed to have potentials in realizing free-conditioning dewatering of sewage sludge with implications to simultaneous clean water extraction and highly efficient volume reduction. Primarily, the investigation on phase equilibrium of propane hydrates found that the organic components of sewage sludge promoted the propane hydrate formation in terms of decreasing equilibrium pressure by up to 19.2%, compared with that in pure water.

View Article and Find Full Text PDF

Nanomaterials are now widely used in the fabrication of electrodes and electrocatalysts. Herein, we report a sonochemical study of the synthesis of molybdenum and palladium alloy nanomaterials supported on functionalized carbon material in various solvents: hexadecane, ethanol, ethylene glycol, polyethylene glycol (PEG 400) and Ionic liquids (ILs). The objective was to identify simple and more environmentally friendly design and fabrication methods for nanomaterial synthesis that are suitable as electrocatalysts in electrochemical applications.

View Article and Find Full Text PDF

The occurrence state and molecular structure of extracellular proteins were analyzed to reveal the influencing factors on the water-holding capacities of protein-like substances in waste-activated sludge (WAS). The gelation process of extracellular proteins verified that advanced oxidation processes (AOPs) for WAS dewaterability improvement eliminated the water affinity of extracellular proteins and prevented these macromolecules from forming stable colloidal aggregates. Isobaric tags for relative and absolute quantitation proteomics identified that most of the extracellular proteins were originally derived from the intracellular part and the proteins originally located in the extracellular part were mainly membrane-associated.

View Article and Find Full Text PDF

We report the nucleation process of methane hydrate on the molecular scale. A stationary planar interface separating methane gas and liquid water was studied by using in situ neutron reflectivity. We found that the angstrom-scale surface roughening is triggered as soon as the water phase contacts methane gas under the hydrate forming conditions.

View Article and Find Full Text PDF

The decomposition kinetics of Fe(CO)5 and Mo(CO)6 induced by sonolysis in hexadecane solvent was studied as a function of temperature (303-343 K) under an inert atmosphere. The decomposition data, obtained over at least two half lives in most of the runs, yielded first-order rate constant (k) values with correlation co-efficient (R2) > 0.95.

View Article and Find Full Text PDF

H(2) production by Petrotoga miotherma, Thermosipho africanus, Thermotoga elfii, Fervidobacterium pennavorans, and Thermotoga neapolitana was compared under microaerobic conditions. Contrary to these previously reported strains being strict anaerobes, all tested strains grew and produced H(2) in the presence of micromolar levels of O(2). T.

View Article and Find Full Text PDF

Concurrent sonolysis of iron pentacarbonyl and poly(ethylene glycol)-400 (PEG-400) in hexadecane solvent proceeds via zero-order kinetics and results in Fe nanoparticles encapsulated in PEG-400 (Fe-PEG). The transmission electron microscopy images show Fe-PEG consisting of <3 nm Fe particles that are evenly dispersed in the PEG matrix. Mössbauer and X-ray absorption fine structure/X-ray absorption near-edge structure data reveal an ordered PEG assembly that helps protect the zerovalent Fe core.

View Article and Find Full Text PDF