A multi-instrument study is conducted at the dayside polar ionosphere to investigate the spatio-temporal evolution of scintillation in Global Navigation Satellite System (GNSS) signals during non-storm conditions. Bursts of intense amplitude and phase scintillation started to occur at 9 MLT and persisted for more than 1 hour implying the simultaneous existence of Fresnel and large-scale sized irregularities of significant strength in the pre-noon sector. Measurements from the EISCAT radar in Svalbard (ESR) revealed the presence of dense plasma structures with significant gradients in regions of strong Joule heating/fast flows and soft precipitation when scintillation was enhanced.
View Article and Find Full Text PDFIn data mining, density-based clustering, which entails classifying datapoints according to their distributions in some space, is an essential method to extract information from large datasets. With the advent of software-based radio, ionospheric radars are capable of producing unprecedentedly large datasets of plasma turbulence backscatter observations, and new automatic techniques are needed to sift through them. We present an algorithm to automatically identify and track clusters of radar echoes through time, using dbscan, a celebrated density-based clustering method for noisy point clouds.
View Article and Find Full Text PDF