The ground and excited state nonvalence correlation-bound (NVCB) anion states of the hexagonal polycylic aromatic hydrocarbons and of hexagonal graphene nanoflakes are characterized using a one-electron model Hamiltonian which incorporates atomic electrostatic moments up to the quadrupole, coupled inducible charges and dipoles, and atom-centered Gaussians to describe the short-range repulsive interactions. Extrapolation of the calculated electron binding energies of the lowest energy symmetric and antisymmetric (with respect to the molecular plane) NVCB anions of both the polycylic aromatic hydrocarbons and the carbon nanoflakes to the → ∞ limit yields binding energies that are in good agreement with those of the most stable symmetric and antisymmetric image potential states of freestanding graphene as determined from two-photon photoemission spectroscopy (2PPE) experiments.
View Article and Find Full Text PDFWe present a polarization model incorporating coupled fluctuating charges and point inducible dipoles that is able to accurately describe the dipole polarizabilities of small hydrocarbons and, for sufficiently large graphene nanoflakes, reproduce the classical image potential of an infinite conducting sheet. When our fluctuating charge model is applied to the hexagonal carbon nanoflake C we attain excellent agreement with the image potential and induced charge distribution of a conducting sheet. With the inclusion of inducible dipole terms, the model predicts an image plane of = 1.
View Article and Find Full Text PDF