Publications by authors named "Devin L Shaffer"

The potential of covalent organic frameworks (COFs) for molecular separations remains unrealized because of challenges transforming nanoscale COF materials into large-area functional COF membranes. Herein, we report the synthesis of large-area (64 cm), ultrathin (24 nm), β-ketoenamine-linked 2D COFs using a facile interfacial polymerization technique. Angstrom-level control over single-digit nanopore size (1.

View Article and Find Full Text PDF

Improving the performance of desalination membranes requires better measurements of salt permeability in the polyamide separating layer to elucidate the thermodynamic and kinetic components of membrane permselectivity. In this work, electrochemical impedance spectroscopy (EIS) is introduced as a technique to measure the salt permeability and estimate the salt partition coefficient in thin polyamide films created using molecular layer-by-layer deposition. The impedance of supported polyamide films ranging in thickness from 3.

View Article and Find Full Text PDF

Neutron radiography, a non-destructive imaging technique, is applied to study water and solute transport through desalination membranes. Specifically, we use neutron radiography to quantify lithium chloride draw solute concentrations across a thin-film composite membrane during forward osmosis permeation. This measurement provides direct visual confirmation of incomplete support layer wetting and reveals significant dilutive external concentration polarization of the draw solution outside of the membrane support layer.

View Article and Find Full Text PDF

A current challenge to desalination membrane technology is the inability to precisely control the properties of the polyamide selective layer due to the complexity of interfacial polymerization. In this study, we investigate the ability of molecular layer-by-layer (mLbL) assembly, an alternative polyamide fabrication technique, to create polyamide surfaces with tunable chemistry. We explore the influence of terminating monomer, monomer deposition time, monomer size, and the presence of underlying ionizable functional groups on mLbL-derived polyamide surface properties.

View Article and Find Full Text PDF

Fertiliser-drawn forward osmosis (FDFO) desalination has been recently studied as one feasible application of forward osmosis (FO) for irrigation. In this study, the potential of membrane scaling in the FDFO process has been investigated during the desalination of brackish groundwater (BGW). While most fertilisers containing monovalent ions did not result in any scaling when used as an FO draw solution (DS), diammonium phosphate (DAP or (NH4)2HPO4) resulted in significant scaling, which contributed to severe flux decline.

View Article and Find Full Text PDF
Article Synopsis
  • Forward osmosis (FO) is a promising water separation process but faces challenges like membrane fouling, which increases costs and reduces lifespan.
  • The study introduces a novel antifouling thin-film composite (TFC) FO membrane created using an in situ method, where Jeffamine is grafted onto the membrane's surface without needing additional treatments.
  • Results indicate that this modified membrane has significantly better resistance to fouling compared to standard polyamide membranes, demonstrated by reduced flux decline and weaker interactions with alginate foulants in experimental tests.
View Article and Find Full Text PDF

In the rapidly developing shale gas industry, managing produced water is a major challenge for maintaining the profitability of shale gas extraction while protecting public health and the environment. We review the current state of practice for produced water management across the United States and discuss the interrelated regulatory, infrastructure, and economic drivers for produced water reuse. Within this framework, we examine the Marcellus shale play, a region in the eastern United States where produced water is currently reused without desalination.

View Article and Find Full Text PDF