Publications by authors named "Devin Karns"

Domestication of algae for food and renewable biofuels remains limited by the low photosynthetic efficiencies of processes that have evolved to be competitive for optimal light capture, incentivizing the development of large antennas in light-limiting conditions, thus decreasing efficient light utilization in cultivated ponds or photobioreactors. Reducing the pigment content to improve biomass productivity has been a strategy discussed for several decades and the ability to reduce pigment significantly is now fully at hand thanks to the widespread use of genome editing tools. is one of the fastest growing marine algae identified and holds particular promise for outdoor cultivation, especially in saline water and warm climates.

View Article and Find Full Text PDF

Microalgae are compelling renewable resources with applications including biofuels, bioplastics, nutrient supplements, and cosmetic products. Picochlorum celeri is an alga with high industrial interest due to exemplary outdoor areal biomass productivities in seawater. Detailed proximate analysis is needed in multiple environmental conditions to understand the dynamic biomass compositions of P.

View Article and Find Full Text PDF

High cellular pigment levels in dense microalgal cultures contribute to excess light absorption. To improve photosynthetic yields in the marine microalga , CAS9 gene editing was used to target the molecular chaperone cpSRP43. Depigmented strains (>50% lower chlorophyll) were generated, with proteomics showing attenuated levels of most light harvesting complex (LHC) proteins.

View Article and Find Full Text PDF

Modulation of photoassimilate export from the chloroplast is essential for controlling the distribution of fixed carbon in the cell and maintaining optimum photosynthetic rates. In this study, we identified chloroplast TRIOSE PHOSPHATE/PHOSPHATE TRANSLOCATOR 2 (CreTPT2) and CreTPT3 in the green alga Chlamydomonas (Chlamydomonas reinhardtii), which exhibit similar substrate specificities but whose encoding genes are differentially expressed over the diurnal cycle. We focused mostly on CreTPT3 because of its high level of expression and the severe phenotype exhibited by tpt3 relative to tpt2 mutants.

View Article and Find Full Text PDF

Photosynthetic organisms frequently experience abiotic stress that restricts their growth and development. Under such circumstances, most absorbed solar energy cannot be used for CO2 fixation and can cause the photoproduction of reactive oxygen species (ROS) that can damage the photosynthetic reaction centers of PSI and PSII, resulting in a decline in primary productivity. This work describes a biological "switch" in the green alga Chlamydomonas reinhardtii that reversibly restricts photosynthetic electron transport (PET) at the cytochrome b6f (Cyt b6f) complex when the capacity for accepting electrons downstream of PSI is severely limited.

View Article and Find Full Text PDF

Environmental stresses dramatically impact the balance between the production of photosynthetically derived energetic electrons and Calvin-Benson-Bassham cycle (CBBC) activity; an imbalance promotes accumulation of reactive oxygen species and causes cell damage. Hence, photosynthetic organisms have developed several strategies to route electrons toward alternative outlets that allow for storage or harmless dissipation of their energy. In this work, we explore the activities of three essential outlets associated with photosynthetic electron transport: () reduction of O to HO through flavodiiron proteins (FLVs) and () plastid terminal oxidases (PTOX) and () the synthesis of starch.

View Article and Find Full Text PDF

[FeFe]-hydrogenases (HYDA) link the production of molecular H(2) to anaerobic metabolism in many green algae. Similar to Chlamydomonas reinhardtii, Chlorella variabilis NC64A (Trebouxiophyceae, Chlorophyta) exhibits [FeFe]-hydrogenase (HYDA) activity during anoxia. In contrast to C.

View Article and Find Full Text PDF