Quantum optical technologies promise advances in sensing, computing, and communication. A key resource is squeezed light, where quantum noise is redistributed between optical quadratures. We introduce a monolithic, chip-scale platform that exploits the χ nonlinearity of a thin-film lithium niobate (TFLN) resonator device to efficiently generate squeezed states of light.
View Article and Find Full Text PDFOptical frequency combs have revolutionized precision measurement, time-keeping and molecular spectroscopy. A substantial effort has developed around 'microcombs': integrating comb-generating technologies into compact photonic platforms. Current approaches for generating these microcombs involve either the electro-optic or Kerr mechanisms.
View Article and Find Full Text PDFIn situ tunable photonic filters and memories are important for emerging quantum and classical optics technologies. However, most photonic devices have fixed resonances and bandwidths determined at the time of fabrication. Here we present an in situ tunable optical resonator on thin-film lithium niobate.
View Article and Find Full Text PDFThe quantum noise of light, attributed to the random arrival time of photons from a coherent light source, fundamentally limits optical phase sensors. An engineered source of squeezed states suppresses this noise and allows phase detection sensitivity beyond the quantum noise limit (QNL). We need ways to use quantum light within deployable quantum sensors.
View Article and Find Full Text PDF