Publications by authors named "Devin Clarke"

Vascular factors are known to be early and important players in Alzheimer's disease (AD) development, however the role of the ε4 allele of the Apolipoprotein (APOE) gene (a risk factor for developing AD) remains unclear. APOE4 genotype is associated with early and severe neocortical vascular deficits in anaesthetised mice, but in humans, vascular and cognitive dysfunction are focused on the hippocampal formation and appear later. How APOE4 might interact with the vasculature to confer AD risk during the preclinical phase represents a gap in existing knowledge.

View Article and Find Full Text PDF

Background: Microglia are long-lived cells that constantly monitor their microenvironment. To accomplish this task, they constantly change their morphology both in the short and long term under physiological conditions. This makes the process of quantifying physiological microglial morphology difficult.

View Article and Find Full Text PDF

Changes in microglial morphology are powerful indicators of the inflammatory state of the brain. Here, we provide an open-source microglia morphology analysis pipeline that first cleans and registers images of microglia, before extracting 62 parameters describing microglial morphology. It then compares control and 'inflammation' training data and uses dimensionality reduction to generate a single metric of morphological change (an 'inflammation index').

View Article and Find Full Text PDF

In this study we investigated effects of the APOE ε4 allele (which confers an enhanced risk of poorer cognitive ageing, and Alzheimer's Disease) on sustained attention (vigilance) performance in young adults using the Rapid Visual Information Processing (RVIP) task and event-related fMRI. Previous fMRI work with this task has used block designs: this study is the first to image an extended (6-minute) RVIP task. Participants were 26 carriers of the APOE ε4 allele, and 26 non carriers (aged 18-28).

View Article and Find Full Text PDF

The fate of the endocrine disrupting compound 4-nonylphenol (NP) in an agricultural soil amended with biosolids was assessed in a greenhouse study. A biosolids with a total NP concentration of 900 mg kg(-1) was incorporated into the 4 cm surface layer of soil columns at an agronomic rate equivalent to 1.7 kg m(2).

View Article and Find Full Text PDF