Extracellular vesicles (EVs) are an emerging class of drug carriers and are primarily reported to be internalized into recipient cells via a combination of endocytic routes such as clathrin-mediated, caveolae-mediated and macropinocytosis pathways. In this work, (1) we investigated potential effects of homotypic vs. heterotypic interactions by studying the cellular uptake of homologous EVs (EV donor cells and recipient cells of the same type) vs.
View Article and Find Full Text PDFLipidoid nanoparticles (LNPs) have transformed the field of drug delivery and are clinically used for the delivery of nucleic acids to liver and muscle targets. Post-intravenous administration, LNPs are naturally directed to the liver due to the adsorption of plasma proteins like apolipoprotein E. In the present work, we have re-engineered LNPs with ionic liquids (ILs) to reduce plasma protein adsorption and potentially increase the accumulation of LNPs in hard-to-deliver central nervous system (CNS) targets such as brain endothelial cells (BECs) and neurons.
View Article and Find Full Text PDFExpert Opin Drug Deliv
January 2024
Introduction: Ischemic stroke-induced mitochondrial dysfunction in brain endothelial cells () leads to breakdown of the blood-brain barrier () causing long-term neurological dysfunction. Restoration of mitochondrial function in injured BECs is a promising therapeutic strategy to alleviate stroke-induced damage. Mounting evidence demonstrate that selected subsets of cell-derived extracellular vehicles (), such as exosomes () and microvesicles (), contain functional mitochondrial components.
View Article and Find Full Text PDFLipid nanoparticles (LNPs) have revolutionized the field of drug delivery through their applications in siRNA delivery to the liver (Onpattro) and their use in the Pfizer-BioNTech and Moderna COVID-19 mRNA vaccines. While LNPs have been extensively studied for the delivery of RNA drugs to muscle and liver targets, their potential to deliver drugs to challenging tissue targets such as the brain remains underexplored. Multiple brain disorders currently lack safe and effective therapies and therefore repurposing LNPs could potentially be a game changer for improving drug delivery to cellular targets both at and across the blood-brain barrier (BBB).
View Article and Find Full Text PDFIschemic stroke causes brain endothelial cell (BEC) death and damages tight junction integrity of the blood-brain barrier (BBB). We harnessed the innate mitochondrial load of BEC-derived extracellular vesicles (EVs) and utilized mixtures of EV/exogenous 27 kDa heat shock protein (HSP27) as a one-two punch strategy to increase BEC survival (via EV mitochondria) and preserve their tight junction integrity (via HSP27 effects). We demonstrated that the medium-to-large (m/lEV) but not small EVs (sEV) transferred their mitochondrial load, that subsequently colocalized with the mitochondrial network of the recipient primary human BECs.
View Article and Find Full Text PDFIntroduction: Extracellular vesicles (EVs) are promising carriers for the delivery of biotherapeutic cargo such as RNA and proteins. We have previously demonstrated that the innate EV mitochondria in microvesicles (MVs), but not exosomes (EXOs) can be transferred to recipient BECs and mouse brain slice neurons. Here, we sought to determine if the innate EV mitochondrial load can be further increased increasing mitochondrial biogenesis in the donor cells.
View Article and Find Full Text PDFEur J Pharm Biopharm
November 2022
Lipidoid nanoparticles (LNPs) are clinically successful carriers for nucleic acid delivery to liver and muscle targets. The ability of LNPs to load and deliver small molecule drugs has not been reported yet. We propose that the delivery of adenosine triphosphate (ATP) to brain endothelial cells (BECs) lining the blood-brain barrier may increase cellular energetics of the injured BECs.
View Article and Find Full Text PDFJ Control Release
March 2022
The field of drug delivery has made tremendous advances in increasing the therapeutic potential of a variety of drug candidates spanning from small molecules to large molecular biologics such as nucleic acids, proteins, etc. Extracellular vesicles (EVs) are mediators of intercellular communication and carry a rich cocktail of innate cargo including lipids, proteins and nucleic acids. EVs are a promising class of natural, cell-derived carriers for drug delivery.
View Article and Find Full Text PDFLipidoid nanoparticles (LNPs) are the delivery platform in Onpattro, the first FDA-approved siRNA drug. LNPs are also the carriers in the Pfizer-BioNTech and Moderna COVID-19 mRNA vaccines. While these applications have demonstrated that LNPs effectively deliver nucleic acids to hepatic and muscle cells, it is unclear if LNPs could be used for delivery of siRNA to neural cells, which are notoriously challenging delivery targets.
View Article and Find Full Text PDFWe have demonstrated, for the first time that microvesicles, a sub-type of extracellular vesicles (EVs) derived from hCMEC/D3: a human brain endothelial cell (BEC) line transfer polarized mitochondria to recipient BECs in culture and to neurons in mice acute brain cortical and hippocampal slices. This mitochondrial transfer increased ATP levels by 100 to 200-fold (relative to untreated cells) in the recipient BECs exposed to oxygen-glucose deprivation, an in vitro model of cerebral ischemia. We have also demonstrated that transfer of microvesicles, the larger EV fraction, but not exosomes resulted in increased mitochondrial function in hypoxic endothelial cultures.
View Article and Find Full Text PDFAdv Drug Deliv Rev
April 2021
A variety of neuroprotectants have shown promise in treating ischemic stroke, yet their delivery to the brain remains a challenge. The endothelial cells lining the blood-brain barrier (BBB) are emerging as a dynamic factor in the response to neurological injury and disease, and the endothelial-neuronal matrix coupling is fundamentally neuroprotective. In this review, we discuss approaches that target the endothelium for drug delivery both across the BBB and to the BBB as a viable strategy to facilitate neuroprotective effects, using the example of brain-derived neurotrophic factor (BDNF).
View Article and Find Full Text PDFEngineered cell-derived extracellular vesicles (EVs) such as exosomes and microvesicles hold immense potential as safe and efficient drug carriers due to their lower immunogenicity and inherent homing capabilities to target cells. In addition to innate vesicular cargo such as lipids, proteins, and nucleic acids, EVs are also known to contain functional mitochondria/mitochondrial DNA that can be transferred to recipient cells to increase cellular bioenergetics. In this proof-of-concept study, we isolated naïve EVs and engineered EVs loaded with an exogenous plasmid DNA encoding for brain-derived neurotrophic factor (BDNF-EVs) from hCMEC/D3, a human brain endothelial cell line, and RAW 264.
View Article and Find Full Text PDFPurpose: We tested polyplexes of a diblock polymer containing a pH-responsive, endosomolytic core (dimethylaminoethyl methacrylate and butyl methacrylate; DB) and a zwitterionic Poly (methacryloyloxyethyl phosphorylcholine) (PMPC) corona for the delivery of plasmid DNA (pDNA) to glioblastoma cells.
Methods: We studied the physicochemical characteristics of the DNA polyplexes such as particle hydrodynamic diameter and surface potential. Cytocompatibility of free PMPC-DB polymer and pDNA polyplexes with U-87MG and U-138MG glioma cell lines were evaluated using the ATP assay.
Resident microglia of the central nervous system are being increasingly recognized as key players in diseases such as neuropathic pain. Biochemical and behavioral studies in neuropathic pain rodent models have documented compelling evidence of the critical role of ATP mediated-P2X4R-brain-derived neurotrophic factor (BDNF) signaling pathway in the initiation and maintenance of pain hypersensitivity, a feature driving neuropathic pain-related behavior. The goal of this study was to develop and characterize an in vitro cell line model of activated microglia that can be subsequently utilized for screening neuropathic pain therapeutics.
View Article and Find Full Text PDFThe blood-brain barrier BBB consists of endothelial cells that form a barrier between the systemic circulation and the brain to prevent the exchange of non-essential ions and toxic substances. Tight junctions (TJ) effectively seal the paracellular space in the monolayers resulting in an intact barrier. This study describes a LY-based fluorescence assay that can be used to determine its apparent permeability coefficient (Papp) and in turn can be used to determine the kinetics of the formation of confluent monolayers and the resulting tight junction barrier integrity in hCMEC/D3 monolayers.
View Article and Find Full Text PDFBrain-derived neurotrophic factor (BDNF) is identified as a potent neuroprotective and neuroregenerative agent for many neurological diseases. Regrettably, its delivery to the brain is hampered by poor serum stability and rapid brain clearance. Here, a novel nanoformulation is reported composed of a bio-compatible polymer, poly(ethylene glycol)--poly(L-glutamic acid) (PEG-PLE), that hosts the BDNF molecule in a nanoscale complex, termed here Nano-BDNF.
View Article and Find Full Text PDFBackground: Low levels of brain-derived neurotrophic factor (BDNF) are linked to delayed neurological recovery, depression, and cognitive impairment following stroke. Supplementation with BDNF reverses these effects. Unfortunately, systemically administered BDNF in its native form has minimal therapeutic value due to its poor blood brain barrier permeability and short serum half-life.
View Article and Find Full Text PDFWe previously developed a "cage"-like nano-formulation (nanozyme) for copper/Zinc superoxide dismutase (SOD1) by polyion condensation with a conventional block copolymer poly(ethylene glycol)-b-poly(L-lysine) (PEG-PLL) followed by chemical cross-linking. Herein we report a new SOD1 nanozyme based on PEG-b-poly(aspartate diethyltriamine) (PEG-PAsp(DET), or PEG-DET for short) engineered for chronic dosing. This new nanozyme was spherical (Rg/Rh=0.
View Article and Find Full Text PDFUse of antioxidants to mitigate oxidative stress during ocular inflammatory diseases has shown therapeutic potential. This work examines a nanoscale therapeutic modality for the eye on the base of antioxidant enzyme, superoxide dismutase 1 (SOD1), termed "nanozyme." The nanozyme is produced by electrostatic coupling of the SOD1 with a cationic block copolymer, poly(L-lysine)-poly(ethyleneglycol), followed by covalent cross-linking of the complexes with 3,3'-dithiobis(sulfosuccinimidylpropionate) sodium salt.
View Article and Find Full Text PDFObjective: Endothelial cell (EC) oxidative stress can lead to vascular dysfunction which is an underlying event in the development of cardiovascular disease (CVD). The lack of a potent and bioavailable anti-oxidant enzyme is a major challenge in studies on antioxidant therapy. The objective of this study is to determine whether copper/zinc superoxide dismutase (CuZnSOD or SOD1) after nanoformulation (nanoSOD) can effectively reduce EC oxidative stress and/or vascular inflammation in obesity.
View Article and Find Full Text PDFObjective: An intimate association exists between oxidative stress and inflammation. Because adipose tissue (AT) inflammation is intricately linked to metabolic disorders, it was hypothesized that reducing oxidative stress would be effective in ameliorating AT inflammation in obesity.
Methods: Wild-type mice were fed a high-fat diet (HF) for 8 weeks followed by a 2-week treatment with nanoformulated copper/zinc superoxide dismutase (NanoSOD).