The development of sensitive and specific exosome detection tools is essential because they are believed to provide specific information that is important for early detection, screening, diagnosis, and monitoring of cancer. Among the many detection tools, surface-plasmon resonance (SPR) biosensors are analytical devices that offer advantages in sensitivity and detection speed, thereby making the sample-analysis process faster and more accurate. In addition, the penetration depth of the SPR biosensor, which is <300 nm, is comparable to the size of the exosome, making the SPR biosensor ideal for use in exosome research.
View Article and Find Full Text PDFSurface Plasmon Resonance (SPR) technology is known to be a powerful tool for studying biomolecular interactions because it offers real-time and label-free multiparameter analysis with high sensitivity. This article summarizes the results that have been obtained from the use of SPR technology in studying the dynamics of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) mutations. This paper will begin by introducing the working principle of SPR and the kinetic parameters of the sensorgram, which include the association rate constant (k), dissociation rate constant (k), equilibrium association constant (K), and equilibrium dissociation constant (K).
View Article and Find Full Text PDFBackground: Due to educational, social and economic reasons, more and more women are delaying childbirth. However, advanced maternal age is associated with several adverse pregnancy outcomes, and in particular a high risk of Down's syndrome (DS). Hence, it is increasingly important to be able to detect fetal Down's syndrome (FDS).
View Article and Find Full Text PDFThe surface plasmon resonance (SPR) biosensor has become a powerful analytical tool for investigating biomolecular interactions. There are several methods to excite surface plasmon, such as coupling with prisms, fiber optics, grating, nanoparticles, etc. The challenge in developing this type of biosensor is to increase its sensitivity.
View Article and Find Full Text PDFUntil now, two-dimensional (2D) nanomaterials have been widely studied and applied in the biosensor field. Some of the advantages offered by these 2D materials include large specific surface area, high conductivity, and easy surface modification. This review discusses the use of 2D material in surface plasmon resonance (SPR) biosensor for diagnostic applications.
View Article and Find Full Text PDF