Introduction: Amid the second wave of COVID 19 India witnessed a surge of mucormycosis cases. This worsened the already existing health emergency. India a diabetic capital had all the favourable factors to support the growth of black fungus.
View Article and Find Full Text PDFComprehensive knowledge of plant root system architecture (RSA) development is critical for improving nutrient use efficiency and increasing crop cultivar tolerance to environmental challenges. An experimental protocol is presented for setting up the hydroponic system, plantlet growth, RSA spreading, and imaging. The approach used a magenta box-based hydroponic system containing polypropylene mesh supported by polycarbonate wedges.
View Article and Find Full Text PDFExcess Phosphorus (P) in agriculture is causing serious environmental problems like eutrophication of lakes and rivers. Unlike the enormous information available for phosphate starvation response (P), very few information is available for the effect of excess phosphate P on plants. Characterization of Excess Phosphate Response (EPR) is essential for designing strategies to increase phosphate accumulation and tolerance.
View Article and Find Full Text PDFA large number of plants have been tested and exploited in search of a green chemistry approach for the fabrication of gold or other precious metal nanomaterials. Despite the potential of plant based methods, very little is known about the underlying biochemical reactions and genes involved in the biotransformation mechanism of AuCl4 into gold nanoparticles (AuNPs). In this research, we thus focused on studying the effect of Au on growth and nanoparticles formation by analyses of transcriptome, proteome and ionome shift in Arabidopsis.
View Article and Find Full Text PDFVery little is known about the genes responsible for Au uptake, reduction and detoxification in plants, which indeed essential to understand the complex trait of AuNP biosynthesis. We designed a targeted experiment to elucidate the response of plant at transcriptional level under Au exposure, and a microarray was performed on root tissue treated with AuCl4 (-) in the absence of nutrient media to record specific gene expression signature. Here, we describe the experimental procedures and data analysis in detail to reproduce the results (available at GEO database under GSE55436) published by Shukla et al.
View Article and Find Full Text PDFThe unique physico-chemical properties of gold nanoparticles (AuNPs) find manifold applications in diagnostics, medicine and catalysis. Chemical synthesis produces reactive AuNPs and generates hazardous by-products. Alternatively, plants can be utilized to produce AuNPs in an eco-friendly manner.
View Article and Find Full Text PDFThe present study demonstrates the first direct evidence of the novel role of OsACA6 in providing Cd (2+) stress tolerance in transgenic tobacco by maintaining cellular ion homeostasis and modulating ROS-scavenging pathway. Cadmium, a non-essential toxic heavy metal, interferes with the plant growth and development. It reaches the leaves through xylem and may become part of the food chain, thus causing detrimental effects to human health.
View Article and Find Full Text PDFRecent studies have identified rice (Oryza sativa) as a major dietary source of inorganic arsenic (As) and poses a significant human health risk. The predominant model for plant detoxification of heavy metals is complexation of heavy metals with phytochelatins (PCs), synthesized non-translationally by PC synthase (PCS) and compartmentalized in vacuoles. In this study, in order to restrict As in the rice roots as a detoxification mechanism, a transgenic approach has been followed through expression of phytochelatin synthase, CdPCS1, from Ceratophyllum demersum, an aquatic As-accumulator plant.
View Article and Find Full Text PDFHeterotrimeric G-proteins constitute the classical signaling paradigm along with their cognate G-protein coupled receptors (GPCRs) and appropriate downstream effectors. G-protein complex is composed of highly conserved Gα, Gβ, and Gγ subunits. In the present study, we have characterized the cis-regulatory elements of the promoter, signature motifs, transcript profile in response to abiotic stresses, and sub-cellular localization of G-protein β subunit RGB1(I) from Indica rice.
View Article and Find Full Text PDFPhytochelatin synthase (PCS) gene encoding key enzyme for heavy metal detoxification and accumulation has been characterised from different sources and used to develop a technology for bioremediation. Past efforts provided limited success and contradictory results. Therefore, functional characterisation of PCS gene from new sources into different target systems is considered as an important task in the area of bioremediation.
View Article and Find Full Text PDFPhytochelatins (PCs) are naturally occurring thiol-rich peptides containing gamma (γ) peptide bonds and are well known for their metal-binding and detoxification capabilities. Whether synthetic phytochelatins (ECs) can be used as an alternative approach for enhancing the metal-binding capacity of plants has been investigated in this study. The metal-binding potential of ECs has been demonstrated in bacteria; however, no report has investigated the expression of ECs in plants.
View Article and Find Full Text PDFHeterotrimeric G-protein complexes (Gα, Gβ and Gγ) operate at the apex of diverse signal transduction systems along with their cognate transmembrane G-protein coupled receptors (GPCRs) and appropriate downstream effectors in the plant. Rice Gα in response to stress has not been well studied. Here, we report the in silico analysis of Gα subunit from Oryza sativa cv.
View Article and Find Full Text PDFUnlabelled: Phytochelatin synthase (PCS), the key enzyme involved in heavy metal detoxification and accumulation has been used from various sources to develop transgenic plants for the purpose of phytoremediation. However, some of the earlier studies provided contradictory results. Most of the PCS genes were isolated from plants that are not potential metal accumulators.
View Article and Find Full Text PDFThe physiological, biochemical, and proteomic changes in germinating rice seedlings were investigated under arsenic stress. A marked decrease in germination percentage, shoot, and root elongation as well as plant biomass was observed with arsenic treatments, as compared to control, whereas accumulation of arsenic and malondialdehyde (MDA) in seedlings were increased significantly with increasing arsenic concentration (both AsIII and AsV). The up-regulation of some antioxidant enzyme activities and the isozymes of superoxide dismutase (SOD, EC 1.
View Article and Find Full Text PDFThe effect of arsenic (As) exposure on genome-wide expression was examined in rice (Oryza sativa L., ssp. Indica).
View Article and Find Full Text PDF