Publications by authors named "Devesa V"

Recent studies show that inorganic arsenic (As) exerts a toxic effect on the intestinal epithelium, causing a significant increase in its permeability. This disruption of the epithelial barrier may favor the entry of contaminants or toxins into the systemic circulation, thus causing toxicity not only at the intestinal level but possibly also at the systemic level. The present study conducts an evaluation of the protective effect of various dietary supplements and plant extracts against the intestinal toxicity of inorganic As.

View Article and Find Full Text PDF
Article Synopsis
  • This study looked at how cooking and digestion affect chemicals released from plastics in food.
  • The researchers found many harmful chemicals in the plastic, some of which can cause cancer.
  • Cooking and digestion make these chemicals mix into the food or liquid, which could be bad for our health.
View Article and Find Full Text PDF

The use of probiotic lactobacilli has been proposed as a strategy to mitigate damage associated with exposure to toxic metals. Their protective effect against cationic metal ions, such as those of mercury or lead, is believed to stem from their chelating and accumulating potential. However, their retention of anionic toxic metalloids, such as inorganic arsenic, is generally low.

View Article and Find Full Text PDF

The utilization of lactic acid bacteria has been proposed to mitigate the burden of heavy metal exposure through processes probably involving chelation and reduced metal bioaccessibility. We evaluated the effects of daily intake of two strains of lactobacilli (Lactobacillus intestinalis LE1 or Lactobacillus johnsonii LE2) on intestinal toxicity during methylmercury (MeHg) exposure through drinking water (5 mg/L) for two months in mice. MeHg exposure resulted in inflammation and oxidative stress at the colon, as well as an increase in intestinal permeability accompanied by decreased fecal short-chain fatty acids (SCFA).

View Article and Find Full Text PDF

The aim of the present study was to determine the efficacy of LAB strains in reducing the intestinal toxicity of arsenite [As(III)] and its tissue accumulation. For this purpose, Balb/c mice were randomly separated in four groups. One group received no treatment (control), one group received only As(III) (30 mg/L) via drinking water and the remaining two groups received As(III) via water and a daily dose of two LAB strains (Lactobacillus intestinalis LE1 and Lacticaseibacillus paracasei BL23) by gavage during 2 months.

View Article and Find Full Text PDF

Chronic exposure to inorganic arsenic (As) [As(III) + As(V)], which affects millions of people, increases the incidence of some kinds of cancer and other noncarcinogenic pathologies. Although the oral pathway is the main source of exposure, studies conducted to verify the intestinal toxicity of this metalloid are scarce and are mainly focused on evaluating the toxicity of As(III). The aim of this study was to evaluate the effect of chronic exposure (6 months) of BALB/c mice to As(V) (15-60 mg/L) via drinking water on the different components of the intestinal barrier and to determine the possible mechanisms involved.

View Article and Find Full Text PDF
Article Synopsis
  • Food is a major source of mercury exposure for humans, and the gastrointestinal tract plays a crucial role in how mercury enters the body.
  • Recent research has begun to focus on the toxic effects of mercury specifically on the intestinal lining and its impact.
  • The review also explores dietary strategies to reduce mercury absorption and improve gut health, while addressing the limitations of current methods and suggesting future research directions.
View Article and Find Full Text PDF

Humans are mainly exposed to mercury (Hg) through contaminated foodstuffs. However, the effects of Hg on the intestinal tract have received little attention. We performed a subchronic exposure to inorganic mercury or methylmercury in mice through drinking water (1, 5 or 10 mg/L for four months) to evaluate their intestinal impact.

View Article and Find Full Text PDF

Extragastrointestinal stromal tumors (EGISTs) are rare mesenchymal neoplasms, which develop in the retroperitoneum, mesentery, and omentum, lacking continuity to the stomach or intestines. Authors hereby present a female patient with a large heterogeneous abdominal mass as a case of an omental EGIST. A 46-year-old woman was referred to our hospital due to an insidious enlargement and colicky pain in the right iliac fossa.

View Article and Find Full Text PDF

Chronic exposure to inorganic arsenic [As(III) and As(V)] affects about 200 million people, and is linked to a greater incidence of certain types of cancer. Drinking water is the main route of exposure, so, in endemic areas, the intestinal mucosa is constantly exposed to the metalloid. However, studies on the intestinal toxicity of inorganic As are scarce.

View Article and Find Full Text PDF

A bicameral model consisting of Caco-2 and HT29-MTX intestinal epithelial cells and THP-1-derived macrophages has been used to test the ability of two strains of Lactobacillus to protect from damage caused by mercury. Exposure to 1 mg/ml mercury [Hg(II) or methyl-Hg] for seven days in this model resulted in an inflammatory and pro-oxidant response mainly driven by macrophages. This led to an impairment in the intestinal barrier, defective tight-junctions, increased permeability and mucus hypersecretion.

View Article and Find Full Text PDF
Article Synopsis
  • Mercury (Hg) mainly enters our bodies through the food we eat, and it can come in two harmful forms: inorganic mercury and methylmercury.
  • Research shows that mercury can cause problems in our brains and kidneys, but we don't know much about how it affects our stomachs.
  • In experiments with special cells, mercury exposure led to inflammation, damage to cell structures, and made it harder for cells to heal, showing that mercury has harmful effects on our digestive system.
View Article and Find Full Text PDF

The increasing use of plastic materials generates an enormous amount of waste. In the aquatic environment, a significant part of this waste is present in the form of microplastics (MPs)- particles with a diameter of between 0.1 μm and 5 mm.

View Article and Find Full Text PDF

The bioaccumulation of arsenic (As) in the muscle, liver, kidneys, and brain of the shark Sphyrna lewini was measured in 40 juvenile specimens from southeast Gulf of California. Additionally, the biomagnification factor was calculated through prey items from stomach contents of the analyzed specimens. The concentrations of As (mg kg, wet weight) were higher in the muscle (10.

View Article and Find Full Text PDF

Lipoteichoic acid (LTA) is a key component of the cell wall of most Gram-positive bacteria and plays many structural and functional roles. In probiotic lactobacilli, the function of LTA in mediating bacteria/host cross-talk has been evidenced and it has been postulated that, owing to its anionic nature, LTA may play a role in toxic metal sequestration by these bacteria. However, studies on this last aspect employing strains unable to synthesise LTA are lacking.

View Article and Find Full Text PDF

Thermal processing or the digestion process can alter the forms of arsenic (As) present in food. Identification of As species is necessary to accurately determine the risk associated with food consumption. X-ray absorption near-edge structure (XANES) was used to investigate As species in rice, asparagus, and garlic boiled in water containing As(V), and in their bioaccessible fractions (solubilized As after gastrointestinal digestion).

View Article and Find Full Text PDF

Inorganic arsenic [iAs, As(III) + As(V)] is considered a human carcinogen. Recent studies show that it has also toxic effects on the intestinal epithelium which might partly explain its systemic toxicity. The aim of this study is to evaluate the protective role of lactic acid bacteria (LAB) against the toxic effects of iAs on the intestinal epithelium.

View Article and Find Full Text PDF

Mushrooms can accumulate toxic trace elements. The objectives of the present study are to evaluate levels of mercury, cadmium, lead, and arsenic in dried mushrooms, to determine the effect of cooking on the contents of these elements, and to evaluate their bioaccessibility in the mushrooms ready for consumption. The results showed that Hg levels in Amanita ponderosa, Boletus edulis, Marasmius oreades, and Tricholoma georgii, as well as Cd levels in some samples of Amanita caesarea and T.

View Article and Find Full Text PDF

It is estimated that approximately 200 million people are exposed to arsenic levels above the World Health Organization provisional guideline value, and various agencies have indicated the need to reduce this exposure. In view of the difficulty of removing arsenic from water and food, one alternative is to reduce its bioavailability (the amount that reaches the systemic circulation after ingestion). In this study, dietary components [glutathione, tannic acid, and Fe(III)] were used to achieve this goal.

View Article and Find Full Text PDF
Article Synopsis
  • Inorganic arsenic is a very toxic substance found in some food and water.
  • This study looks at how it affects intestinal cells and causes problems like inflammation and oxidative stress.
  • It also shows that arsenic changes important proteins in the cells, which can make it harder for the cells to protect the gut.
View Article and Find Full Text PDF

Chronic exposure to inorganic arsenic (As) [As(III) + As(V)], which affects millions of people, increases the incidence of some kinds of cancer and other non-carcinogenic pathologies. Although the oral pathway is the main form of exposure, in vivo studies have not been conducted to verify the intestinal toxicity of this metalloid. The aim of this study is to perform an in vivo evaluation of the intestinal toxicity of inorganic As, using female BALB/c mice exposed through drinking water to various concentrations of As(III) (20, 50, and 80 mg/L) for 2 months.

View Article and Find Full Text PDF

The capacity of two LAB strains to inhibit inorganic [Hg(II)] and organic (methyl-Hg; MeHg) mercury translocation through monolayers of co-cultures of NCM460 and HT29-MTX colonic cells was evaluated. Lactobacillus casei BL23 and Lactobacillus acidophilus ATCC4356 reduced the permeability of Hg(II) and MeHg from aqueous solutions through NCM460/HT29-MTX monolayers (20-94% reduction). However, assays using the bioaccessible (soluble) Hg fraction obtained by in vitro gastrointestinal digestion of Hg-contaminated swordfish only showed a reduction (42%) with the BL23 strain.

View Article and Find Full Text PDF

Chronic exposure to inorganic arsenic (As) is associated with numerous adverse effects. Argentina is one of the countries affected by arsenicism; however, there are few studies that evaluate inorganic As exposure and its effects on child population. The aim of this study is to evaluate exposure to As through water and food in child populations living in the provinces of Santiago del Estero and Chaco (n = 101), and to determine the impact of this exposure analysing biomarkers of exposure (urine and hair As contents) and effect [8-oxo-7,8-dihydro-2'-deoxyguanosine (8-OHdG)].

View Article and Find Full Text PDF

Chronic exposure to inorganic arsenic (As)-As(III) + As(V)-is associated with type 2 diabetes, vascular diseases and various types of cancer. Although the oral route is the main way of exposure to inorganic As, the adverse gastrointestinal effects produced by chronic exposure are not well documented. The aim of the present study is to evaluate the effect of chronic exposure to As(III) on the intestinal epithelium.

View Article and Find Full Text PDF

The synthesis of the inorganic polymer polyphosphate (poly-P) in bacteria has been linked to stress survival and to the capacity of some strains to sequester heavy metals. In addition, synthesis of poly-P by certain strains of probiotic lactobacilli has been evidenced as a probiotic mechanism due to the homeostatic properties of this compound at the intestinal epithelium. We analyzed the link between poly-P synthesis, stress response, and mercury toxicity/accumulation by comparing wild-type strains of and their corresponding mutants devoid of poly-P synthesis capacity (defective in the poly-P kinase, , gene).

View Article and Find Full Text PDF