Publications by authors named "Devereaux T"

Previous studies on natural samples of pampaloite (AuSbTe) revealed the crystal structure of a potentially cleavable and/or exfoliable material, while studies on natural and synthetic montbrayite (Sb-containing AuTe) claimed various chemical compositions for this low-symmetry compound. Few investigations of synthetic samples have been reported for both materials, leaving much of their chemical, thermal, and electronic characteristics unknown. Here, we investigate the stability, electronic properties, and synthesis of the gold antimony tellurides AuSbTe and AuSbTe (montbrayite).

View Article and Find Full Text PDF

Recent experiments suggest a new paradigm toward novel colossal magnetoresistance (CMR) in a family of materials EuM[Formula: see text]X[Formula: see text] (M [Formula: see text] Cd, In, Zn; X [Formula: see text] P, As), distinct from the traditional avenues involving Kondo-Ruderman-Kittel-Kasuya-Yosida crossovers, magnetic phase transitions with structural distortions, or topological phase transitions. Here, we use angle-resolved photoemission spectroscopy and density functional theory calculations to explore their origin, particularly focusing on EuCd[Formula: see text]P[Formula: see text]. While the low-energy spectral weight royally tracks that of the resistivity anomaly near the temperature with maximum magnetoresistance ([Formula: see text]) as expected from transport-spectroscopy correspondence, the spectra are completely incoherent and strongly suppressed with no hint of a Landau quasiparticle.

View Article and Find Full Text PDF

Motivated by the pair-density-wave (PDW) state found in the one-dimensional Kondo-Heisenberg chain, we report on a determinant quantum Monte Carlo study of pair fields for a two-dimensional half-filled Hubbard layer coupled to an itinerant, noninteracting layer with one electron per site. In a specific range of interlayer hopping, the pairing vertex associated with PDW order becomes more attractive than that for uniform d-wave pairing, although both remain subdominant to the leading antiferromagnetic correlations at half filling. Our result sheds light on where one potentially may find a PDW state in such a model.

View Article and Find Full Text PDF
Article Synopsis
  • The study aimed to understand the values and preferences of caregivers for children with complex medical needs, specifically focusing on surgical decisions for neuromuscular scoliosis to help develop a decision support tool.
  • Qualitative interviews were conducted with caregivers from different backgrounds, analyzing their experiences to identify key themes related to treatment choices and concerns.
  • The findings revealed that caregivers prioritize pain management, mobility, quality of life, peer support, and the uncertainty of outcomes, highlighting the need for better decision-making support that considers their values and addresses uncertainties in treatment.
View Article and Find Full Text PDF

Understanding electron-phonon coupling in noncentrosymmetric materials is critical for controlling the internal fields which give rise to Rashba interactions. We apply time- and angle-resolved photoemission spectroscopy (trARPES) to study coherent phonons in the surface and bulk regions of the polar semiconductor BiTeCl. Aided by ab initio calculations, our measurements reveal the coupling of out-of-plane A_{1} modes and an in-plane E_{2} mode.

View Article and Find Full Text PDF

In this work, we build a computationally inexpensive, data-driven model that utilizes atomistic structure information to predict the reactivity of interfaces between any candidate solid-state electrolyte material and a Li metal anode. This model is trained on data from molecular dynamics (AIMD) simulations of the time evolution of the solid electrolyte-Li metal interfaces for 67 different materials. Predicting the reactivity of solid-state interfaces with techniques remains an elusive challenge in materials discovery and informatics, and previous work on predicting interfacial compatibility of solid-state Li-ion electrolytes and Li metal anodes has focused mainly on thermodynamic convex hull calculations.

View Article and Find Full Text PDF

Diamondoids are a class of organic molecules with the carbon skeletons isostructural to nano-diamond, and have been shown to be promising precursors for diamond formation. In this work, the formation of diamond crystals from various diamondoid molecule building blocks was studied using our developed molecular geometry specific Monte Carlo method. We maintained the internal carbon skeletons of the diamondoid molecules, and investigated how the carbon-carbon bonds form between diamondoid molecules and how efficient the process is to form diamond crystals.

View Article and Find Full Text PDF

Silicon-vacancy (SiV) centers in diamond are emerging as promising quantum emitters in applications such as quantum communication and quantum information processing. Here, we demonstrate a sub-μs pulsed annealing treatment that dramatically increases the photoluminescence of SiV centers in diamond. Using a silane-functionalized adamantane precursor and a laser-heated diamond anvil cell, the temperature and energy conditions required to form SiV centers in diamond were mapped out via an optical thermometry system with an accuracy of ±50 K and a 1 μs temporal resolution.

View Article and Find Full Text PDF

In the underdoped n-type cuprate NdCeCuO, long-range antiferromagnetic order reconstructs the Fermi surface, resulting in a putative antiferromagnetic metal with small Fermi pockets. Using angle-resolved photoemission spectroscopy, we observe an anomalous energy gap, an order of magnitude smaller than the antiferromagnetic gap, in a wide portion of the underdoped regime and smoothly connecting to the superconducting gap at optimal doping. After considering all the known ordering tendencies in tandem with the phase diagram, we hypothesize that the normal-state gap in the underdoped n-type cuprates originates from Cooper pairing.

View Article and Find Full Text PDF

Polarons-fermionic charge carriers bearing a strong companion lattice deformation-exhibit a natural tendency for self-localization due to the recursive interaction between electrons and the lattice. While polarons are ubiquitous in insulators, how they evolve in transitions to metallic and superconducting states in quantum materials remains an open question. Here, we use resonant inelastic x-ray scattering to track the electron-lattice coupling in the colossal magneto-resistive bi-layer manganite La_{1.

View Article and Find Full Text PDF

Manipulating the polarization of light at the nanoscale is key to the development of next-generation optoelectronic devices. This is typically done via waveplates using optically anisotropic crystals, with thicknesses on the order of the wavelength. Here, using a novel ultrafast electron-beam-based technique sensitive to transient near fields at THz frequencies, we observe a giant anisotropy in the linear optical response in the semimetal WTe and demonstrate that one can tune the THz polarization using a 50 nm thick film, acting as a broadband wave plate with thickness 3 orders of magnitude smaller than the wavelength.

View Article and Find Full Text PDF

The formation of charge density waves is a long-standing open problem, particularly in dimensions higher than one. Various observations in the vanadium antimonides discovered recently further underpin this notion. Here, we study the Kagome metal CsVSb using polarized inelastic light scattering and density functional theory calculations.

View Article and Find Full Text PDF

We have investigated the 3d orbital excitations in CaCuO_{2} (CCO), Nd_{2}CuO_{4} (NCO), and La_{2}CuO_{4} (LCO) using high-resolution resonant inelastic x-ray scattering. In LCO they behave as well-localized excitations, similarly to several other cuprates. On the contrary, in CCO and NCO the d_{xy} orbital clearly disperses, pointing to a collective character of this excitation (orbiton) in compounds without apical oxygen.

View Article and Find Full Text PDF

As the field of exfoliated van der Waals electronics grows to include complex heterostructures, the variety of available in-plane symmetries and geometries becomes increasingly valuable. In this work, we present an efficient chemical vapor transport synthesis of NbSeI with the triclinic space group 1̅. This material contains Nb-Nb dimers and an in-plane crystallographic angle γ = 61.

View Article and Find Full Text PDF

Many metallic quantum materials display anomalous transport phenomena that defy a Fermi liquid description. Here, we use numerical methods to calculate thermal and charge transport in the doped Hubbard model and observe a crossover separating high- and low-temperature behaviors. Distinct from the behavior at high temperatures, the Lorenz number [Formula: see text] becomes weakly doping dependent and less sensitive to parameters at low temperatures.

View Article and Find Full Text PDF

As primarily an electronic observable, the room-temperature thermopower S in cuprates provides possibilities for a quantitative assessment of the Hubbard model. Using determinant quantum Monte Carlo, we demonstrate agreement between Hubbard model calculations and experimentally measured room-temperature S across multiple cuprate families, both qualitatively in terms of the doping dependence and quantitatively in terms of magnitude. We observe an upturn in S with decreasing temperatures, which possesses a slope comparable to that observed experimentally in cuprates.

View Article and Find Full Text PDF

We introduce an adhesion parameter that enables rapid screening for materials interfaces with high adhesion. This parameter is obtained by density functional theory calculations of individual single-material slabs rather than slabs consisting of combinations of two materials, eliminating the need to calculate all configurations of a prohibitively vast space of possible interface configurations. Cleavage energy calculations are used as an upper bound for electrolyte and coating energies and implemented in an adapted contact angle equation to derive the adhesion parameter.

View Article and Find Full Text PDF
Article Synopsis
  • Scientists are studying 2D ferromagnets, which are materials that can act like magnets in just two dimensions, and are interested in how they might be used in new technology.
  • They found a special type of magnetism in very thin layers of a material called CrTe, thanks to advanced tools that let them see its details.
  • They discovered that when CrTe is really thin, it still acts like a magnet, but some properties change, showing that the thickness of these materials can affect how they work.
View Article and Find Full Text PDF

The appearance of certain spectral features in one-dimensional (1D) cuprate materials has been attributed to a strong, extended attractive coupling between electrons. Here, using time-dependent density matrix renormalization group methods on a Hubbard-extended Holstein model, we show that extended electron-phonon (e-ph) coupling presents an obvious choice to produce such an attractive interaction that reproduces the observed spectral features and doping dependence seen in angle-resolved photoemission experiments: diminished 3k spectral weight, prominent spectral intensity of a holon-folding branch, and the correct holon band width. While extended e-ph coupling does not qualitatively alter the ground state of the 1D system compared to the Hubbard model, it quantitatively enhances the long-range superconducting correlations and suppresses spin correlations.

View Article and Find Full Text PDF

The search for superconductivity in infinite-layer nickelates was motivated by analogy to the cuprates, and this perspective has framed much of the initial consideration of this material. However, a growing number of studies have highlighted the involvement of rare-earth orbitals; in that context, the consequences of varying the rare-earth element in the superconducting nickelates have been much debated. Here, we show notable differences in the magnitude and anisotropy of the superconducting upper critical field across the La-, Pr-, and Nd-nickelates.

View Article and Find Full Text PDF

The excitonic insulator (EI) is a Bose-Einstein condensation (BEC) of excitons bound by electron-hole interaction in a solid, which could support high-temperature BEC transition. The material realization of EI has been challenged by the difficulty of distinguishing it from a conventional charge density wave (CDW) state. In the BEC limit, the preformed exciton gas phase is a hallmark to distinguish EI from conventional CDW, yet direct experimental evidence has been lacking.

View Article and Find Full Text PDF

The Jahn-Teller effect, in which electronic configurations with energetically degenerate orbitals induce lattice distortions to lift this degeneracy, has a key role in many symmetry-lowering crystal deformations. Lattices of Jahn-Teller ions can induce a cooperative distortion, as exemplified by LaMnO (refs. ).

View Article and Find Full Text PDF

The treatment of electronic correlations in open-shell systems is among the most challenging problems of condensed matter theory. Current approximations are only partly successful. Ligand-field multiplet theory has been widely successful in describing intra-atomic correlation effects in x-ray spectra, but typically ignores itinerant states.

View Article and Find Full Text PDF

Electron-phonon interaction and related self-energy are fundamental to both the equilibrium properties and non-equilibrium relaxation dynamics of solids. Although electron-phonon interaction has been suggested by various time-resolved measurements to be important for the relaxation dynamics of graphene, the lack of energy- and momentum-resolved self-energy dynamics prohibits direct identification of the role of specific phonon modes in the relaxation dynamics. Here, by performing time- and angle-resolved photoemission spectroscopy measurements on Kekulé-ordered graphene with folded Dirac cones at the Γ point, we have succeeded in resolving the self-energy effect induced by the coupling of electrons to two phonons at Ω = 177 meV and Ω = 54 meV, and revealing its dynamical change in the time domain.

View Article and Find Full Text PDF