Publications by authors named "Devera T"

Activation of iNKT cells with the CD1d-binding glycolipid adjuvant α-galactosylceramide (α-GC) enhances humoral immunity specific for coadministered T-dependent Ag. However, the relationship between the iNKT cell and the classic T helper (Th) or T follicular helper (Tfh) function following this immunization modality remains unclear. We show that immunization with the C-terminal domain (CTD) of Clostridium difficile toxin B (TcdB), accompanied by activation of iNKT cells with α-GC, led to enhanced production of CTD-specific IgG, which was CD1d- and iNKT cell-dependent and associated with increased neutralization of active TcdB.

View Article and Find Full Text PDF

Secreted toxin B (TcdB) substantially contributes to the pathology observed during Clostridium difficile infection. To be successfully incorporated into a vaccine, TcdB-based immunogens must stimulate the production of neutralizing antibody (Ab)-encoding memory B cells (Bmem cells). Despite numerous investigations, a clear analysis of Bmem cellular responses following vaccination against TcdB is lacking.

View Article and Find Full Text PDF

Protective immunity against anthrax is inferred from measurement of vaccine antigen-specific neutralizing antibody titers in serum samples. In animal models, in vivo challenges with toxin and/or spores can also be performed. However, neither of these approaches considers toxin-induced damage to specific organ systems.

View Article and Find Full Text PDF

CD1d-restricted invariant NKT (iNKT) cells boost humoral immunity to T-dependent Ags that are coadministered with the CD1d-binding glycolipid Ag α-galactosylceramide (α-GC). Observations that mice lacking iNKT cells have decaying Ab responses following vaccination have led to the hypothesis that iNKT cells express plasma cell (PC) survival factors that sustain specific Ab titers. Bone marrow chimeric mice in which the entire hematopoietic compartment or iNKT cells selectively lacked BAFF, a proliferation-inducing ligand (APRIL), or both BAFF and APRIL were created and immunized with nitrophenol hapten-conjugated keyhole limpet hemocyanin adsorbed to Imject aluminum hydroxide-containing adjuvant or mixed with α-GC.

View Article and Find Full Text PDF

Alum-based adjuvants facilitate vaccine-driven humoral immunity, but their mechanism of action remains poorly understood. Herein, we report that lack of type II NKT cells is associated with intact, mature B cells but dampened humoral immunity following immunization with Alum-adsorbed T-dependent antigen. Type II NKT cells facilitated production of IL-4, IL-5, IL-10, IL-13, and antibody by LN and splenocyte cultures following Alum/antigen administration in vivo and antigen restimulation in vitro.

View Article and Find Full Text PDF

CD1d-restricted type I NKT cells provide help for specific antibody production. B cells, which have captured and presented a T-dependent, antigen-derived peptide on MHC class II and CD1d-binding glycolipid α-GC on CD1d, respectively, activate Th and NKT cells to elicit B cell help. However, the role of the DC CD1d in humoral immunity remains unknown.

View Article and Find Full Text PDF

Activation of Natural Killer-like T cells (NKT) with the CD1d ligand α-GC leads to enhanced production of anthrax toxin protective Ag (PA)-neutralizing Abs, yet the underlying mechanism for this adjuvant effect is not known. In the current study we examined the role of Th1 and Th2 type responses in NKT-mediated enhancement of antibody responses to PA. First, the contribution of IL-4 and IFNγ to the production of PA-specific toxin-neutralizing Abs was examined.

View Article and Find Full Text PDF

The CD1d-binding glycolipid α-galactosylceramide exerts potent adjuvant effects on T-dependent humoral immunity. The mechanism is driven by cognate interaction between CD1d-expressing B cells and TCR-expressing type I CD1d-restricted NKT cells. Thus, far positive effects of alpha-galactosylceramide have been observed on initial and sustained antibody titers as well as B-cell memory.

View Article and Find Full Text PDF

The current Bacillus anthracis vaccine consists largely of protective antigen (PA), the protein of anthrax toxin that mediates entry of edema factor (EF) or lethal factor (LF) into cells. PA induces protective antibody (Ab)-mediated immunity against Bacillus anthracis but has limited efficacy and duration. We previously demonstrated that activation of CD1d-restricted natural killer-like T cells (NKT) with a CD1d-binding glycolipid led to enhanced Ab titers specific for foreign antigen (Ag).

View Article and Find Full Text PDF

Exogenous CD1d-binding glycolipid (alpha-Galactosylceramide, alpha-GC) stimulates TCR signaling and activation of type-1 natural killer-like T (NKT) cells. Activated NKT cells play a central role in the regulation of adaptive and protective immune responses against pathogens and tumors. In the present study, we tested the effect of Bacillus anthracis lethal toxin (LT) on NKT cells both in vivo and in vitro.

View Article and Find Full Text PDF

NKT cell activation with CD1d-binding glycolipid alpha-galactosylceramide (alpha-GC) enhances antibody responses to co-administered T-dependent antigen. The efficacy of alpha-GC relative to other CD1d-binding glycolipids and adjuvants is not known. There is little information on how NKT cells affect antibody production beyond initial booster-stimulated recall responses.

View Article and Find Full Text PDF

Activation of natural killer-like T (NKT) cells with the CD1d ligand alpha-galactosylceramide enhances T-dependent humoral immune responses against coadministered T-dependent Ag. At present, there is little information on the mechanisms involved other than a dependence on CD1d expression by antigen-presenting cells and/or development of the NKT subset. We therefore tested the hypothesis that direct presentation of alpha-GC by B cells was required for NKT-enhanced Ab responses against T-dependent Ag.

View Article and Find Full Text PDF