Protein-based hydrogels are appealing materials for a variety of therapeutic uses because they are compatible, biodegradable, and adaptable to biological and chemical changes. Therefore, adherent varieties of hydrogels have received significant study; nevertheless, the majority of them show weak mechanical characteristics, transient adherence, poor biocompatibility activity, and low tensile strength. Here we are reporting, a two-component (BSA-gelatin) protein solution crosslinked with Tetrakis (hydroxymethyl) phosphonium chloride (THPC) to form a novel hydrogel.
View Article and Find Full Text PDFBleeding causes ∼5.8 million deaths globally; half of the patients die if rapid hemostasis is not achieved. Here, we report a chitosan-casein (CC)-based nanofibrous polyelectrolyte complex (PEC) that could clot blood within 10 s in the rat femoral artery model in vivo.
View Article and Find Full Text PDFTissue adhesives offer a plethora of advantages in achieving efficient wound closure over conventional sutures and staples. Such materials are of great value, especially in cases where suturing could potentially damage tissues or compromise blood flow or in cases of hard-to-reach areas. Besides providing wound closure, the tissue adhesives must also facilitate wound healing.
View Article and Find Full Text PDFPolylactic acid based spherical particles with three architectural variations (Isotropic (P1), Semi porous (P2), and Janus (P3)) were employed to encapsulate zero valent iron nanoparticles (ZVINPs), and their performance was extensively evaluated in our previous studies. However, little was known about their transportability through saturated porous media of varying grain size kept under varying ionic strength. In this particular study, we aimed to investigate the architectural effect of polymeric particles (P1-P3) on their mobility through the sand column of varying grain size in presence of mono, di, and tri-valent ions of varying concentrations (25-200 mM (millimoles)).
View Article and Find Full Text PDFAlthough several bioinks have been developed for 3D bioprinting applications, the lack of optimal printability, mechanical properties, and adequate cell response has limited their practical applicability. Therefore, this work reports the development of a composite bioink consisting of bovine serum albumin (BSA), alginate, and self-assembled nanofibrous polyelectrolyte complex aggregates of gelatin and chitosan (PEC-GC). The nanofibrous PEC-GC aggregates were prepared and incorporated into the bioink in varying concentrations (0 % to 3 %).
View Article and Find Full Text PDFBackground And Aims: Awake fibreoptic intubation is considered a safe approach in airway management of a patient with difficult airway. Awake fibreoptic endoscopy needs appropriate anaesthesia of airway to suppress airway reflexes and prevent discomfort. We planned this study to evaluate effect of adding dexmedetomidine to lignocaine nebulization on conditions for awake videoendoscopic intubation.
View Article and Find Full Text PDFChitosan-based thermosensitive bioink can be a potential option as bioinks for bone tissue engineering because of their excellent biocompatibility and crosslinker-free gelation at physiological temperature. However, their low mechanical strength, poor printability, and low post-printing cell viability are some of their limitations. In this work, self-assembled nanofibrous aggregates of chitosan and gelatin were prepared and incorporated in chitosan-based bioinks to enhance printability, mechanical properties, post-printing cell viability, and proliferation.
View Article and Find Full Text PDFBiodegradable drug-eluting stents (DESs) are gaining importance owing to their attractive features, such as complete drug release to the target site. Magnesium (Mg) alloys are promising materials for future biodegradable DESs. However, there are few explorations using biodegradable Mg for cardiovascular stent application.
View Article and Find Full Text PDFJ Biomater Sci Polym Ed
December 2023
Non-union of large bone defects has been an existing clinical problem. 3D extrusion-based bioprinting provides an efficient approach to tackle such problems. This approach enables the use of various biomaterials, cell types and growth factors in developing a superior bone graft that is specific to the defect.
View Article and Find Full Text PDFBiomed Mater
February 2023
Currently, one of the most severe clinical concerns is post-surgical tissue adhesions. Using films or hydrogel to separate the injured tissue from surrounding tissues has proven the most effective method for minimizing adhesions. Therefore, by combining dual crosslinking with calcium ions (Ca) and tetrakis(hydroxymethyl) phosphonium chloride, we were able to create a novel, stable, robust, and injectable dual crosslinking hydrogel using albumin (BSA).
View Article and Find Full Text PDFAn ideal bone regeneration scaffold system needs to meet the high compressive properties of the bone. The stiffness of the scaffold extracellular matrix determines the cell's fate via cell adhesion migration and differentiation in-vitro and in-vivo. This study aims to investigate the effect of hydrothermal treatment on polyelectrolyte complex (PEC) fibrous biomaterials and its effect on scaffold morphology, cell viability, and function in-vitro.
View Article and Find Full Text PDFPhenol is one of the most common hazardous organic compound presents in several industrial effluents which directly affects the aquatic environment. The present study envisaged the phenol biodegradation and simultaneous lipid production along with its underlying mechanism by oleaginous yeast Rhodosporidium toruloides 9564. Experiments were designed using simulated wastewater by varying phenol concentration in the range of 0.
View Article and Find Full Text PDFAn extracellular matrix (ECM) mimicking a 3D microenvironment is an essential requirement to achieve desirable repair or regeneration of damaged tissue or organ. In this context, hydrogels may be able to create an appropriate 3D microenvironment. The lack of mechanical stability limits their application.
View Article and Find Full Text PDFHemorrhage is a leading cause of preventable death in both military combat and civilian accidents. To overcome these challenges, an affordable and effective bandage is must required substance. A novel strategy is reported for developing chitosan-casein (CC) based self-assembled nanofibrous polyelectrolyte complex (PEC) for rapid blood clotting.
View Article and Find Full Text PDFMater Sci Eng C Mater Biol Appl
February 2020
The use of injectable hydrogels is currently restricted by the challenge of achieving fast gelation, good mechanical strength, and cytocompatibility. Polymeric self-assembly is a potent tool for generating functional materials that combine multiple characteristics and can react to external factors. In this study, we have developed fiber-reinforced composite hydrogels that exhibits significantly enhanced mechanical strength, reduced gelling time, and excellent cytocompatibility.
View Article and Find Full Text PDFTernary amorphous alloys in the magnesium (Mg)-zinc (Zn)-calcium (Ca) and the iron (Fe)-Mg-Zn systems are promising candidates for use in bioresorbable implants and devices. The optimal alloy compositions for biomedical applications should be chosen from a large variety of available alloys with best combination of mechanical properties (modulus, strength, hardness) and biological response (in situ degradation rates, cell adhesion and proliferation). As a first step towards establishing a database designed to enable such targeted material selection, amorphous alloy composition libraries were fabricated employing a combinatorial magnetron sputtering approach where Mg, Zn, and Ca/Fe are co-deposited from separate sources onto a silicon wafer substrate.
View Article and Find Full Text PDFSurgical clipping and endovascular coiling are well recognized as conventional treatments of Penetrating Brain Injury aneurysms. These clinical approaches show partial success, but often result in thrombus formation and the rupture of aneurysm near arterial walls. The authors address these challenging brain traumas with a unique combination of a highly biocompatible biopolymer hydrogel rendered magnetic in a flexible and resilient membrane coating integrated to a scaffold stent platform at the aneurysm neck orifice, which enhances the revascularization modality.
View Article and Find Full Text PDFWe report here the self-assembled structures of polyelectrolyte complexes (PECs) of polyanionic sodium alginate with the polycationic chitosan at room temperature. The PECs prepared at different pH values exhibited two distinct morphologies. The chitosan-alginate PECs self-assembled into the fibrous structure in a low pH range of pH3 to 7.
View Article and Find Full Text PDFJ Biomater Appl
November 2017
The aim of this work was to develop a polyelectrolyte complex-based hemostatic dressing made from chitosan and polygalacturonic acid. Porous dressings were fabricated by ultrasonication of chitosan and alginate solutions followed by freeze-drying. Since chitosan has inherent hemostatic properties, and polygalacturonic acid is anti-inflammatory in nature, it was desired to combine these two polymers to develop an effective hemostatic dressing, which may also promote wound healing.
View Article and Find Full Text PDFThe AgNPs synthesized by green method have shown great potential in several applications such as biosensing, biomedical, catalysis, electronic etc. The present study deals with the selective colorimetric detection of Fe using photoinduced green synthesized AgNPs. For the synthesis purpose, an aqueous extract of Croton bonplandianum (AEC) was used as a reducing and stabilizing agent.
View Article and Find Full Text PDFPanayiotopoulos syndrome (PS) is a benign childhood epilepsy with predominant autonomic symptoms. The syndrome can have varied presentations resulting in diagnostic dilemma. We herein describe a 3-year-old boy with PS, who had manifestations similar to septic shock.
View Article and Find Full Text PDFJ Anaesthesiol Clin Pharmacol
March 2016
Background And Aims: The role of nitro-glycerine (NTG) lingual spray for attenuation of the hemodynamic response associated with intubation is not much investigated. We conducted this study to evaluate the efficacy of NTG lingual pump or pen spray in attenuation of intubation induced hemodynamic responses and to elucidate the optimum dose.
Material And Methods: In a prospective randomized controlled trial, 90 adult patients of ASA I, II, 18-60 year posted for elective general surgery under general anesthesia with intubation were randomly allocated to three groups as Group C (control) - receiving no NTG spray, Group N1 - receiving 1 NTG spray and Group N2 - receiving 2 NTG spray one minute before intubation.
Acute hypocalcaemia is a medical emergency that can have catastrophic implications like tetany, seizures, cardiac arrythmias or laryngospasm if left untreated. We are presenting a case of a 30-year-old female patient undergoing total abdominal hysterectomy with bilateral salpingoopherectomy under spinal anaesthesia. She developed unexpected bilateral carpal spasm intraoperatively which was promptly diagnosed and successfully managed with intravenous calcium administration.
View Article and Find Full Text PDFCurrent study presents an economic, ecofriendly and simple photo-catalytic green route for the swift biosynthesis of silver nanoparticles (AgNPs) within 20s, devoid of any instrumental support or chemical reductant. Aqueous leaf-extract of an aquatic fern, Salvinia molesta (AES), was used as a bioreductant as well as a stabilizing agent. Rapid change in color of reaction mixture from yellowish green to reddish brown within 20s in direct sun light exposure was considered as the primary visual indication of AgNPs biosynthesis.
View Article and Find Full Text PDFThe interfaces between organic and inorganic phases in natural materials have a significant effect on their mechanical properties. This work presents a quantification of the interface stress as a function of interface chemical changes (water, organic molecules) in chitin-calcite (CHI-CAL) interfaces using classical non-equilibrium molecular dynamics (NEMD) simulations and steered molecular dynamics (SMD) simulations. NEMD is used to investigate interface stress as a function of applied strain based on the virial stress formulation.
View Article and Find Full Text PDF